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High-level Goals

1. Understand why the Transformer architecture struggles in
terms of sample efficiency when learning relational tasks.

2. Design mechanisms for explicit relational reasoning within
the broader Transformer framework.
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Existing deep learning 
architectures produce “entangled” 
representations lacking explicit 
relational information.

The “Abstractor” model 
implements inductive biases which 
disentangle relational information  
from object-level features.

Figure 1. How the Abstractor differs from a standard Transformer: the
Abstractor learns more organized and well‐separated representations of
relational features which are disentangled from object‐level features.
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Comparison of relational cross‐attention (RCA) with self‐attention (SA). RCA
implements a relational information bottleneck, resulting in relational
representations disentangled and from object‐level features.

Attention under the
Neural Message-Passing Lens

Under the neural‐message passing lens, self‐attention is
yi← Aggregate({mj→i : j ∈ [n]}),

mj→i = (r(xi, xj), ϕv(xj))

The attention scores can be thought of as relations between pairs
of objects that determine which object to “attend to” and retrieve
information from.

In standard self‐attention, computing these relations is merely an
intermediate step in an information‐retrieval operation.

The relations are entangled with object‐level features. Because
object‐level features have much greater variability, they over‐
whelm the relational features in the attention representation.

Relational Cross-Attention

We propose a modification of attention where the object‐level
features ϕv(xj) are replaced with vectors sj we call symbols that
identify objects, but do not encode their features.

Symbols live in a space with much smaller variability, inducing a
relation‐centric representation.

Relational cross‐attention then implements the following neural
message‐passing operation,

yi← Aggregate({mj→i : j ∈ [n]})
mj→i← (r(xi, xj), sj)

s1, ..., sn← SymbolAssignment(x1, . . . , xn),

with the symbol si identifying the object xi through position, rel‐
ative position, and/or syntactic role.

This operation forms the core of the Abstractor module, which
can be naturally incorporated into a broader Transformer‐based
architecture.

Experiments

Empirical evaluation shows that the Abstractor is more sample‐
efficient and better able to generalize on tasks involving relational
reasoning, compared to a standard Transformer.
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Task: ‘SET!’, a visual relational reasoning task. The learning curves show that
the Abstractor outperforms existing relational architectures.

0 500 1000 1500 2000 2500 3000

Training Set Size

0.00

0.25

0.50

0.75

1.00

S
or

ti
n

g
A

cc
u

ra
cy

Random Object Sorting

Abstractor

Ablation Model

Transformer

0 500 1000 1500 2000 2500 3000

Training Set Size

0.0

0.5

1.0

S
or

ti
n

g
A

cc
u

ra
cy

Random Object Sorting Generalization

Abstractor

Pre-trained

Transformer

Pre-trained

Task: learn to sort according to a latent order relation. Learning curves show
that the Abstractor is more sample‐efficient and generalizes to similar tasks.
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Task: Character‐level seq2seq task: Given a mathematical question, predict
the answer. Abstractor learns faster and reaches higher accuracy.
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