CoT Information: Improved Sample Complexity under Chain-of-Thought Supervision

John Lafferty Omar Montasser Awni Altabaa

Statistics & Data Science, Yale University

Scan for project webpage

Motivation & High-level Goals

- Standard supervised learning: observe only input-output pairs; when learning very complicated functions (e.g., multi-step reasoning) this provides a weak supervision signal, requiring an intractable number of samples to learn.
- Chain-of-Thought (CoT) supervision: provides learner with additional information through observing intermediate step-by-step reasoning traces
- Empirical Observation: LLMs trained with CoT supervision exhibit dramatically higher accuracy on reasoning tasks
- This work: develops a theoretical statistical learning framework explaining when and why CoT supervision yields more rapid learning.

Theoretical Framework

Background: Standard Supervised Learning. Want to learn h_{\star} : $\mathcal{X} \to \mathcal{Y}$ in some function class $\mathcal{H} \subset \mathcal{Y}^{\mathcal{X}}$. Learner observes labeled examples (x_i, y_i) . Learning algorithm: $\mathcal{A} : S = \{(x_i, y_i)\}_{i=1}^m \mapsto \hat{h}$.

Goal: achieve small prediction error $\mathcal{R}(\hat{h}) := \mathbb{P}\left[\hat{h}(x) \neq y\right] \leq \varepsilon$.

CoT-Supervised Learning. Each hypothesis h emits two observable outputs:

$$y=h^{
m e2e}(x)$$
 and $z=h^{
m CoT}(x)$

Additional information is encoded in the CoT $z=h^{\text{CoT}}(x)$, e.g., step-by-step computational trace.

Definition (CoT hypothesis class). A family of functions $\mathcal{H} \subset (\mathcal{Y} \times \mathcal{Y})$ \mathcal{Z}) $^{\mathcal{X}}$, where \mathcal{Y} is the output space and \mathcal{Z} is the CoT space.

Example: \mathcal{H} is a sequence model class (e.g., Transformers) that outputs a CoT $\boldsymbol{z} = (z_1, \dots, z_T)$ followed by the final answer y.

CoT Learning Algorithm: A mapping $\mathcal{A}: (\mathcal{X} \times \mathcal{Y} \times \mathcal{Z})^* \to \mathcal{Y}^{\mathcal{X}}$.

Types of Error: End-to-End risk and CoT risk,

$$\mathcal{R}^{e2e}_{\mathcal{D}}(h) := \mathbb{P}\left[h^{e2e}(x) \neq y\right], \ \mathcal{R}^{CoT}_{\mathcal{D}}(h) := \mathbb{P}\left[h(x) \neq (y, z)\right]$$

Goal: achieve small end-to-end prediction error $\mathcal{R}^{\mathrm{e2e}}_{\mathcal{D}}(\hat{h})$.

CoT learner observes (x, y, z), input, output, and CoT.

Evaluation metric is end-to-end error.

CoT Information & Improved Sample Complexity

E2E Learning is Slow for Complex Tasks. Standard end-to-end learning has a sample complexity that scales as

$$\mathcal{O}\left(rac{ exttt{Complexity}(\mathcal{H})}{arepsilon}
ight)$$

When the function to be learned is complex, this can be very slow. Intuitively: observing input-output examples alone reveals little information about the target function.

How to measure the amount of information encoded in the CoT for distinguishing hypotheses in the hypothesis class?

Definition: CoT Information

where

For a CoT hypothesis class $\mathcal{H} \subset (\mathcal{Y} \times \mathcal{Z})^{\mathcal{X}}$ and distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y} \times \mathcal{Z}$ realizable by \mathcal{H} , the CoT information is the function

$$\mathcal{I}_{\mathcal{D}}^{\text{CoT}}(\varepsilon;\mathcal{H}) := \inf_{h \in \Delta_{\mathcal{D}}^{\text{e2e}}(\varepsilon;\mathcal{H})} - \log \underset{x,y,z \sim \mathcal{D}}{\mathbb{P}} \left[(h^{\text{CoT}}(x), h^{\text{e2e}}(x)) = (y,z) \right],$$

 $\Delta^{\mathrm{e2e}}_{\mathcal{D}}(arepsilon;\mathcal{H}) := \left\{ h \in \mathcal{H} : \underset{x,y}{\mathbb{P}} \left[h^{\mathrm{e2e}}(x) \neq y \right] > \varepsilon \right\}$

- Large $\mathcal{I}^{\mathrm{CoT}}_{\mathcal{D}}(\varepsilon) \implies$ each CoT sample carries more information \rightarrow fewer samples needed.
- $\mathcal{I}_{\mathcal{D}}^{\text{CoT}}(\varepsilon)/\varepsilon$ ratio interpreted as relative value of CoT sample compared to E2E sample; always ≥ 1 .

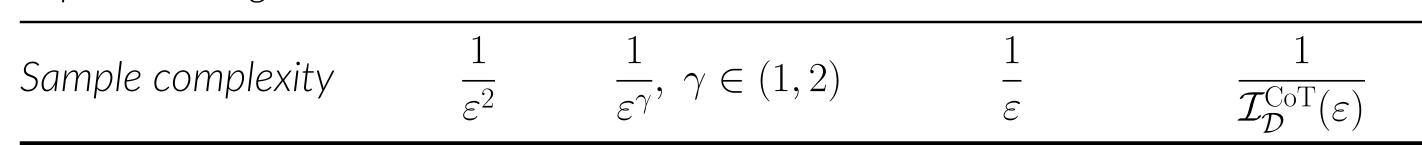
The CoT Information captures the statistical rate of CoT learning

Result: Statistical Complexity of CoT Learning

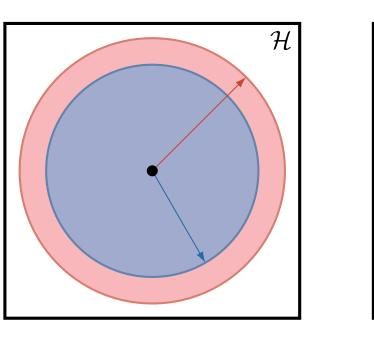
CoT supervision improves the sample complexity of learning by replacing the ε -dependence with the CoT information

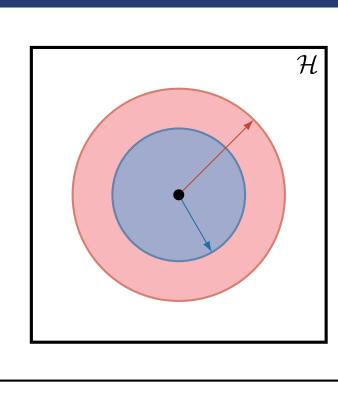
Result establishes complementary upper bounds and lower bounds

Informativeness of E2E Noisy E2E Low-Noise E2E Noiseless CoT Supervision Supervision Signal



-More Information, Faster Learning–





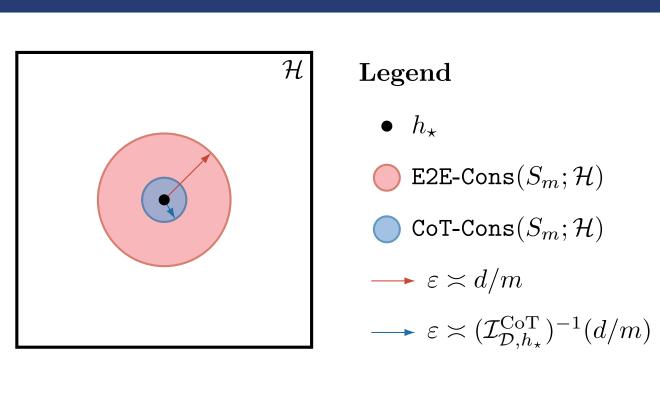


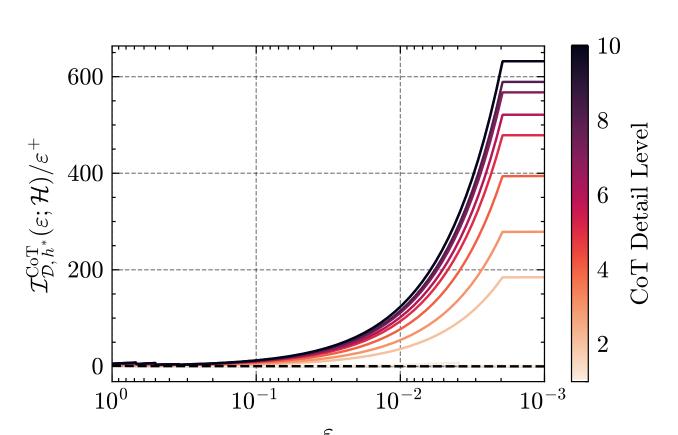
Illustration of the geometry of learning with CoT supervision compared to End-to-End supervision: the volume of the CoT constrained ball around h_{\star} shrinks faster than the volume of the E2E constrained ball around h_{\star}

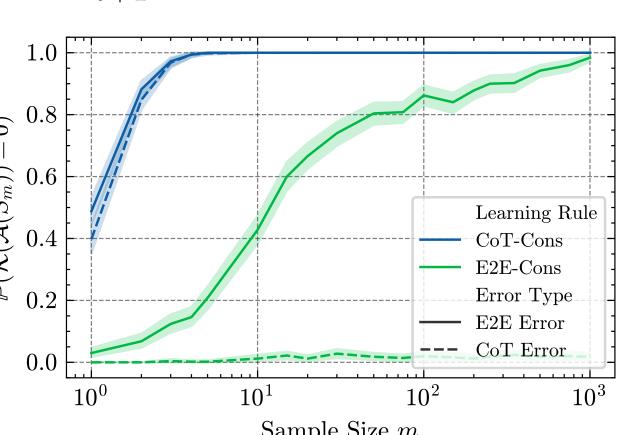
Empirical Validation of Theoretical Predictions

Learning regular language \mathcal{L} . End-to-end function is membership in \mathcal{L} . CoT is sequence of states for corresponding DFA

$$h^{\text{e2e}}(x) = \mathbf{1}\{x \in \mathcal{L}\}, \ h^{\text{CoT}}(x) = (z_1, \dots, z_n),$$

where DFA has state transitions $z_t \stackrel{x_t}{\rightarrow} z_{t+1}$.





- (a) Theoretical CoT information.
- (b) Empirical learning curve.

Simulation results for learning a regular language. CoT information $\lim_{\varepsilon\to 0} \mathcal{I}_{\mathcal{D}}^{\text{CoT}}(\varepsilon;\mathcal{H})/\varepsilon^+ \approx 600$ accurately predicts the empirical sample-efficiency improvement $(10^2 - 10^3 \times)$

Conclusion

- Introduced the CoT information as a new statistical measure of supervision strength, characterizing CoT learning.
- Established statistical upper bounds & lower bounds.
- $\mathcal{I}_{\mathcal{D}}^{\mathrm{CoT}}(\varepsilon)$ provides a quantitative metric for the value of observing reasoning traces — practical implication: CoT annotation design.
- Offers new perspective for other problems: OOD generalization, reinforcement learning for reasoning, and scaling laws for CoT.