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Introduction

In a sequential decision‐making problem, the information structure is the description of how
events in the system occurring at different points in time affect each other.

Classical models of reinforcement learning (e.g., MDPs, POMDPs, Dec‐POMDPs/POMGs)
assume a very simple and highly regular information structure, while more general models
like predictive state representations do not explicitly model the information structure.

Real‐world sequential decision‐making problems typically involve a complex and
time‐varying interdependence of system variables, requiring a rich and flexible
representation of information structure.

The control community has long recognized the importance of information structure, leading
to the development of the celebrated Witsenhausen intrinsic model (Witsenhausen, 1975),
and extensive study since the 1970s. This includes characterizing the tractability of planning
(i.e., computing the optimal policy given a model) as a function of the information structure.

A general theory of information structures in reinforcement learning is missing.

Key take-aways

An explicit representation of information structure enables a richer analysis of
reinforcement learning problems and more tailor‐designed algorithms.

The information structure of a reinforcement learning problem determines (in part) its
statistical tractability. In particular, when learning general sequential decision‐making
problems with arbitrary information structures, the information structure determines key
quantities in the sample complexity.

We identify a quantity, which we call the information‐structural state due to its role as an
“effective state”, that we show is central to constructing compact representations that
enable efficient reinforcement learning. This quantity is derived in terms of the DAG
representation of the information structure.

Generic Sequential Decision-Making Problems

Consider a controlled stochastic process (X1, . . . , XH), where Xh is a random variable corre‐
sponding to the variable at time h. Xh may be either an ‘observation’ or an ‘action’. A choice of
policy π = {πh}h∈A induces a probability distribution on X1 × · · · × XH as follows

Pπ (x1, . . . , xH) =
∏
h∈O

Ph (xh | x1, . . . , xh−1) ·
∏
h∈A

πh (xh | x1, . . . , xh−1) , (1)

We define the system dynamics matrix Dh ∈ R|Hh|×|Fh| as the matrix giving the probability of each
possible pair of history and future at time h given the execution of the actions,

[Dh]τh,ωh = P [τh, ωh] = P
[
τoh, ω

o
h

∣∣ do(τah , ω
a
h)
]
, τh ∈ Hh, ωh ∈ Fh, (2)

where ωoh = obs(ωh) are is the observation component of the future ωh, ωah = act(ωh) is the
action component, and similarly for τoh, τ

a
h .

The rank of such a controlled stochastic process is the maximal rank of its dynamics matrices.
This is a measure of the complexity of the dynamics. Definition (Rank of dynamics). The rank of
the dynamics {Dh}h∈[H ] is r = maxh∈[H ] rank(Dh).

Explicitly representing information structures in RL:
Partially-Observable Sequential Teams (and Games)

A partially‐observable sequential team (POST) is a controlled stochastic process that specifies the
joint distribution of T variables (Xt)t∈[T ], and is specified by the following components.

1. Variable Structures. The variables {Xt}t∈[T ] are partitioned into two disjoint subsets —
S ⊂ [T ] indexes system variables and A ⊂ [T ] indexes action variables.

2. Information Structure. For t ∈ [T ], the “information set” It ⊂ [t− 1] of the variable Xt is the
set of past variables that are coupled to Xt in the dynamics. That is, the value of
It := (Xs : s ∈ It) directly determines the distribution of Xt. We call It the “information
variable” at time t, and call It =

∏
s∈ItXs the “information space”.

3. System Kernels. For any t ∈ S , Tt is a mapping from It to P(Xt) that specifies the
conditional distribution of a system variable Xt given It.

4. Decision Kernels. Each agent chooses a decision kernel (i.e., policy) πt : It → P(Xt),
specifying the distribution over actions at time t ∈ A.

5. Observability. We denote the observable system variables by O ⊂ S . We require that the
information sets of the action variables are observable, O ⊃ ∪t∈A(It ∩ S). We define
U := O ∪ A, and let H := |U| be the time‐horizon of the observable variables.

6. Reward Function. At the end of an episode, the team receives the reward R (xs, s ∈ U),
where R :

∏
s∈U Xs → [0, 1] is the “reward function.”

Any choice of decision kernels (joint policy) π induces a unique probability measure over X1 ×
· · · × XT , which is given by

Pπ [X1 = x1, . . . XT = xt] =
∏
t∈S

Tt(xt| {xs : s ∈ It})
∏
t∈A

πt(xt| {xs : s ∈ It}). (3)

From the perspective of a learning agent, we are interested in modeling the observable variables,
which we can index by h ∈ [H ] as follows,(

Xt(h)
)
h∈[H ]

=
(
Xt(1), . . . , Xt(H)

)
= (Xt)t∈U . (4)

Characterizing the rank of dynamics via information structural state

The information structure of a POST can be naturally represented as a (labeled) directed acyclic
graph (DAG). Given the variable structure and information structure of a POST, (S,A,O, {It}t),
its DAG representation is given by G(V , E ,L). The nodes of the graph are the set of variables,
V = [T ] = S ∪ A. The edges E ⊂ V × V of the DAG are given by

E = {(i, t) : t ∈ [T ], i ∈ It} .

Definition (Information‐structural state). For each h ∈ [H ], let I†
h ⊂ [t(h)] be the mini‐

mal set of past variables (observed or unobserved) which d‐separates the past observations
(Xt(1), . . . , Xt(h)) from the future observations (Xt(h+1), . . . , Xt(H)) in the DAG G†. Define
I†h :=

∏
s∈I†

h

Xs as the joint space of those variables.

Theorem (complexity of dynamics of POST/POSG). The rank of the observable system dynamics
of a POST or POSG is bounded by

r ≤ max
h∈[H ]

∣∣I†h∣∣.

Signifcance & Implications: Generalized Predictive State
Representations and Sample-Efficent Reinforcement Learning

Theorem (Generalized PSR) A POST/POSG (under certain conditions) can be represented com‐
pactly by a set of operators Mh : Xh → Rd×d, h ∈ {1, . . . , H − 1} which capture the probability
of any trajectory,

P
[
xt(1), . . . , xt(H)

]
= ϕH

(
xt(H)

)⊤
MH−1

(
xt(H−1)

)
· · ·M1

(
xt(1)

)
ψ0. (5)

Theorem (Sample complexity of RL) There exists a reinforcement learning algorithm which learns
an ϵ‐optimal policy/an ϵ‐equilibrium for POSTs/POSGs (under certain conditions) with a polyno‐
mial sample complexity depending on the information‐structural state,

1
ϵ2

× poly
(

1
α
,max

h

∣∣∣I†h∣∣∣ ,max
h

∣∣Qmh ∣∣ ,max
s∈U

|Xs| , QA, H
)

(6)

Examples of Information Structures & their Information-Structral State
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(a) Decentralized POMDP/POMG information‐structure.
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(b) “Mean‐field” information structure.
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(c) Point‐to‐point real‐time
communication with feedback
information structure.
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(d) Limited‐memory (m = 2) information
structures.
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(e) Fully connected information structure.

Figure 1. DAG representation of various information structures. Grey nodes represent unobservable variables, blue
nodes represent past observable variables, green nodes represent future observable variables, and red nodes
represent the information structural state I†

h.
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