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High-level goal

1. 1) Understand why the Transformer

architecture struggles with

sample-efficiently learning relational tasks;

2. 2) Design mechanisms for explicit

relational reasoning within the broader

Transformer framework
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Attention through the neural

message-passing lens



Attention through the neural message-passing lens

Recall: standard self-attention takes the form

(x1, . . . , xn) 7→ (y1, . . . , yn)

yi =

n∑
j=1

αij ϕv(xj),

αi· = Softmax
(
[⟨r(xi, xj)⟩]nj=1

)
The attention scores can be thought of as relations between pairs

of objects which determine which object to “attend to” and

retrieve information from.
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Attention through the neural message-passing lens

In standard self-attention, computing these relations is merely an

intermediate step in an information-retrieval operation.

The relations αij are entangled with object-level features ϕv(xj).

|Object space| ≫ |Relation space|

Prevents abstraction and efficient learning of relational features.

Would require somehow “marginalizing” over variability in

irrelevant object-level features.
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Attention through the neural message-passing lens

Under the neural-message passing lens, self-attention is

x′i ← Aggregate({mj→i : j ∈ [n]}),
mj→i = (r(xi, xj), ϕv(xj)),

r(xi, xj) = ⟨ϕq(xi), ϕk(xj)⟩

We propose a modification of this where the object-level features

ϕv(xj) are replaced with vectors sj we call “symbols”, which

identify objects, but do not encode their features.

Symbols live in a space with much smaller variability, inducing a

relation-centric representation.
0Aggregate has the particular form

⊕
j mj→i, where where ⊕ is a binary

operation on a commutative monoid given by

(r1, x1)⊕ (r2, x2) = (exp(r1) + exp(r2),
exp(r1)x1+exp(r2)x2

exp(r1)+exp(r2)
)
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Relational cross-attention

Relational cross-attention then implements the following “neural

message-passing” operation,

x′i ← Aggregate({mj→i : j ∈ [n]})
mj→i ← (r(xi, xj), sj)

s1, ..., sn ← SymbolAssignment(x1, . . . , xn)

with the “symbol” si identifying through position, relative

position, and/or syntactic role.
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Pictoral depiction of SA & RCA
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Input sequence

Encoder states

Relation tensor
𝑅𝑖𝑗 = ⟨𝜙𝑞 𝑥𝑖 , 𝜙𝑘(𝑥𝑗)⟩

E ← SA(X)

Relation tensor
𝑅𝑖𝑗 = ⟨𝜙𝑞 𝑥𝑖 , 𝜙𝑘(𝑥𝑗)⟩
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Relational 
Bottleneck

Input sequence Symbols

Abstract states

A← RCA(X, S)

Comparison of relational cross-attention (RCA) with self-attention (SA).

RCA implements a relational information bottleneck, which results in

relational representations that are disentangled and separated from

object-level features.
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The “Abstractor” Module

By composing relational cross-attention with an MLP, analogously

to a Transformer block, we obtain a natural formulation of a

composable neural module for relational processing which fits

nicely within the broader Transformer framework.

Input: object sequence: X = (x1, . . . , xn) ∈ Rn×d

A(0) ← SymbolRetriever(X)

for l← 1 to L do

A(l) ← RelationalCrossAttention
(
X,A(l−1)

)
A(l) ← A(l) +A(l−1) // residual connection

A(l) ← LayerNorm(A(l))

A(l) ← FeedForward
(
A(l)

)
end

Output: A(L)

7



Abstractor-supported architectures
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Abstractor-supported architectures

The Abstractor module can be incorporated into a broader

Transformer-based architecture to support enhanced relational

processing. The choice of architecture should depend on the type

of relational processing required by the underlying task.

AbstractorEncoder Decoder𝑋 ෝ𝒚(d)

AbstractorEncoder Decoder𝑋 ෝ𝒚Abstractor(e)

AbstractorEncoder Decoder𝑋 ෝ𝒚(b)

Abstractor Decoder𝑋 ෝ𝒚(a)

Abstractor

Encoder

Decoder𝑋 ෝ𝒚(c)
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Experiments



Discriminative Relational Tasks: SET!

We compare to existing “relational architectures” which have been

proposed for discriminative tasks.

Demo of SET! task
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Learning curves of different models

The Abstractor is more versatile and more sample-efficient.
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Synthetic Sequence-to-Sequence Relational Tasks: “Object-

sorting”

Setting: Randomly assign an order on objects o ∈ [N ], N = 48.

Task: Learn to sort sequences of randomly shuffled objects.

Relevent relation is order ≺.
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Learning curves on sorting sequences

of random objects.

The abstractor is dramatically more

sample-efficient.
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Learning curves with and without

pre-training on a similar sorting task.

The Abstractor generalizes & benefits

from pre-training. 10



Mathematical problem-solving

Task: Character-level sequence-to-sequence task. Given a

mathematical question, predict the answer.

E.g.: expand (3*x + 1)*(2*x - 5) → 6*x**2 - 13*x - 5
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The Abstractor learns faster and reaches higher accuracy
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Thank you
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