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High-level goal

1) Understand why the Transformer
architecture struggles with
sample-efficiently learning relational tasks;
2) Design mechanisms for explicit
relational reasoning within the broader

Transformer framework



Attention through the neural
message-passing lens



Attention through the neural message-passing lens

Recall: standard self-attention takes the form
(x17.--,$n) H (ylﬂ""yn>
n
Yi = Zaij bu(z5),
j=1
o;. = Softmax ([(r(mz,xj)ﬂ;l:l)

The attention scores can be thought of as relations between pairs
of objects which determine which object to “attend to” and
retrieve information from.



Attention through the neural message-passing lens

In standard self-attention, computing these relations is merely an
intermediate step in an information-retrieval operation.

The relations «;; are entangled with object-level features ¢, (x;).

|Object space| >> |Relation space|

Prevents abstraction and efficient learning of relational features.
Would require somehow “marginalizing” over variability in
irrelevant object-level features.



Attention through the neural message-passing lens

Under the neural-message passing lens, self-attention is

z; + Aggregate({m;_; : j € [n]}),
My = (T(xz; .’L']), ¢1}($]))7

r(zi, 25) = (Bg(Ti), dr(;))

We propose a modification of this where the object-level features
¢u(z;) are replaced with vectors s; we call “symbols”, which
identify objects, but do not encode their features.

Symbols live in a space with much smaller variability, inducing a
= i ion.

0 Aggregate has the particular form @j mj—i, where where & is a binary

operation on a commutative monoid given by

(r1,21) @ (r2,x2) = (exp(r1) + exp(r2), 4“};5(;1(),111)13?:312)



Relational cross-attention & the
Abstractor




Relational cross-attention

Relational cross-attention then implements the following “neural
message-passing’ operation,

z; + Aggregate({m;_,; : j € [n]})
mjsi  (7(i,75), 5;)

S1, vy Sp < SymbolAssignment (1, . . ., x,)

with the “symbol” s; identifying through position, relative
position, and/or syntactic role.



Pictoral depiction of SA & RCA
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Comparison of relational cross-attention (RCA) with self-attention (SA).
RCA implements a relational information bottleneck, which results in
relational representations that are disentangled and separated from
object-level features.



The “Abstractor” Module

By composing relational cross-attention with an MLP, analogously
to a Transformer block, we obtain a natural formulation of a
composable neural module for relational processing which fits
nicely within the broader Transformer framework.

Input: object sequence: X = (z1,...,x,) € R™*?
A©) « SymbolRetriever(X)
for [+ 1to L do
AW + RelationalCrossAttention (X, A(l_l))
AD  AD 4 A=Y // residual connection
AW « LayerNorm(A®)
AW « FeedForward (A(l))
end
Output: AL



Abstractor-supported architectures
within the Transformer framework




Abstractor-supported architectures

The Abstractor module can be incorporated into a broader
Transformer-based architecture to support enhanced relational
processing. The choice of architecture should depend on the type

of relational processing required by the underlying task.
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Experiments




Discriminative Relational Tasks: SET!

We compare to existing “relational architectures” which have been
proposed for discriminative tasks.

SET Classification
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The Abstractor is more versatile and more sample-efficient.



Synthetic Sequence-to-Sequence Relational Tasks: “Object-

sorting”

Setting: Randomly assign an order on objects o € [N], N = 48.
Task: Learn to sort sequences of randomly shuffled objects.

Relevent relation is order <.
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of random objects. pre-training on a similar sorting task.

The abstractor is dramatically more The Abstractor generalizes & benefits
sample-efficient. from pre-training. 10



Mathematical problem-solving

Task: Character-level sequence-to-sequence task. Given a
mathematical question, predict the answer.

E.g.: expand (3*x + 1)*(2%x - 5) — 6*x**2 - 13*%x - 5
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The Abstractor learns faster and reaches higher accuracy "
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