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A Question for ChatGPT...

Question: Which number is larger, 9.9 or 9.10?
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ChatGPT 5 Instant ✗
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ChatGPT 5 Thinking ✓
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Another example

hmm... Let’s try another question.

Question: A forest has 1000 trees. Each year, loggers cut down
half of the trees remaining at the start of the year. In the same

year, conservationists plant 100 new trees at the end of the
year. After this process repeats for two years, how many trees

are in the forest?
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ChatGPT 5 Instant ✗
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ChatGPT 5 Thinking ✓
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What the CoT trace looks like (Courtesy of DeepSeek)
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One last example

Okay... One more...

Question: Suppose x+ 2y − z = 4, −3x− y + z = 10,
4x+ y − 2z = 15. Solve for x, y, z.
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ChatGPT 5 Instant ✗
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ChatGPT 5 Thinking ✓
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What’s going on here?

• ChatGPT Instant is attempting to produce the answer
immediately in one step.

• But... robustly computing the answers to these questions
involves a multi-step process.

• CoT training provides a form of intermediate supervision:
learning the “process” not just the “answer”

• ChatGPT Thinking carries out the computation
step-by-step, emulating a learned problem-solving
procedure, enabling it to arrive at the correct answer.
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What’s Going on Here?

• Observation: CoT supervision improves accuracy on
reasoning tasks.

• Question: How can we formalize and measure the
statistical advantage from CoT?

• Next: A learning-theoretic framework capturing this
advantage.
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Central questions

1. When does CoT reduce sample complexity vs. end-to-end
labels?

2. How do we quantify the added information in CoT traces?
3. What upper bounds/lower bounds govern CoT learning?
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Answers to these questions in...

To be presented at NeurIPS ’25
14



Collaborators

Omar Montasser
Yale

John Lafferty
Yale

15



Plan

• Part I: Chain-of-Thought in LLMs, in practice
• Part II: Formalizing CoT-Supervised learning
• Part III: Upper Bounds + “CoT Information”
• Part IV: Information-theoretic Lower Bounds
• Part V: Simulations
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Chain-of-Thought in Large Language
Models



A Hitchhiker’s Guide to Building an LLM
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A Hitchhiker’s Guide to Building an LLM

Step 1: Pre-training (foundation modeling).

Goal: Learn broad world knowledge and language ability

Data + Objective: Next-token prediction objective on
internet-scale text.

18



A Hitchhiker’s Guide to Building an LLM

Step 2: Supervised Fine-Tuning.

Goal: Teach model to follow instructions and perform tasks
step-by-step.

Data + Objective: Smaller scale but high-quality
human-written demonstrations in Q/A format; includes
chain-of-thought style rationales*

*sometimes hidden at inference, depending on model
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A Hitchhiker’s Guide to Building an LLM

Step 3: Post-Training (Preference Optimization & Alignment)

Goal: align outputs to human preferences, enforce safety
policies, enable tool-use and function-calling

Data + Objective: varies; includes human preferences
(RLHF/DPO), SFT on tool-calling traces, synthetic data, ...
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Our Focus

We will focus on the CoT supervision during SFT

what statistical advantage does it provide?
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How to obtain CoT traces to train on?
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How to get a dataset of CoT Traces?

• Human-authored : e.g., domain experts or trained
annotators; or mined from educational content (e.g.,
step-by-step solutions in textbooks)

• Model-generated : traces generated by prompting,
filtered via self-consistency or self-verification

• Hybrid : model generates, humans filter/rate/edit
• Programmatic synthesis : for certain tasks, it may be

possible to generate traces programmatically

Cobbe et al. [arXiv:2110.14168], Wang et al. [arXiv:2203.11171],
Zelikman et al. [arXiv:2203.14465], Lightman et al. [arXiv:2305.20050]
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Our Model of CoT

For us: we will abstract away from the specific method of
obtaining CoT traces or their format (e.g., natural language or
otherwise)

We assume the CoT dataset exists, and ask:

What statistical advantage does training with CoT confer
compared to traditional supervised learning from

input-output examples?
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Formalizing Learning with CoT
Supervision



Two Aspects of Chain-of-Thought Theory

1. Function Approximation — Expanded representational
capacity
• lots of work here; pretty well-understood*

2. Statistical — More rapid & sample-efficient learning
• less understood; our focus for this work

* e.g., Pérez et al. [arXiv:1901.03429], Merrill & Sabharwal [arXiv:2310.07923], Li et al. [arXiv:2402.12875]
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Traditional Supervised Learning

Want to learn h⋆ : X → Y in some function class H ⊂ YX

Observe labeled examples (xi, yi) from random inputs xi
i.i.d.∼ D,

with label yi = h⋆(xi)

Learning algorithm maps training sample to predictor:

A : S = {(xi, yi)}mi=1 7→ ĥ

Goal: achieve small prediction error

R(ĥ) := P
x∼D

[
ĥ(x) ̸= y

]
≤ ε

consider the realizable setting for now
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Basic intuition: standard end-to-end learning

Suppose we want to distinguish two hypotheses H = {h1, h2}.

We can distinguish them once we observe x such that
h1(x) ̸= h2(x).

If P
x∼D

[h1(x) ̸= h2(x)] = ε, this will take

O
(
1

ε

)
samples.
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Sample Complexity in Classical Statistical Learning

Extend to larger classes (> 2 hypotheses) via union bound

Gives sample complexity O (log |H| /ε), scaling with class
size/complexity |H| and error parameter ε.

(Or: VC dimension, Rademacher, Covering Numbers, etc.)

We will be mainly interested in the ε-dependence in the
denominator, interpreting it as “the amount of information
per observed sample”

e.g., under noise (agnostic setting), with less “information” per sample, the rate is 1/ε2 ; under low-noise
conditions, we interpolate between 1/ε and 1/ε2
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Challenges of Classical (end-to-end) Learning for Long-Form
Reasoning Problems

• What if we want to learn very complicated functions h⋆?
• E.g., w/ modern LLMs, want to learn long-form multi-step

reasoning: mathematical reasoning, coding, etc...
• Statistically very difficult to learn these complex

multi-step functions
• Observing input-output examples (xi, yi) alone reveals

relatively little information about the function h⋆
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Idea: Train with a stronger signal

• Provide additional information to the learner
• Not only input-output pairs, but also expose step-by-step

computational trace
• Reveals more information that allows identifying function

to be learned faster

32



Intuition (Preview): Why this enables more rapid learning?

Suppose instead that h1, h2 emit two observable outputs:

y = he2e(x) AND z = hCoT(x)

Then, h1, h2 can be distinguished if we observe x where either
he2e1 (x) ̸= he2e2 (x) OR hCoT

1 (x) ̸= hCoT
2 (x).

It’s now easier to distinguish the two hypotheses (possibly
much easier).

Let I(ε) := P
x∼D

[
he2e1 (x) ̸= he2e2 (x) OR hCoT

1 (x) ̸= hCoT
2 (x)

]
≥ ε.

Now only need O (1/I(ε)) samples.
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CoT Hypothesis Class

We adopt an abstract definition of CoT hypothesis classes.

CoT Hypothesis Class
A family H ⊂ (Y × Z)X of functions h : X → Y ×Z , where
y ∈ Y is the final output and z ∈ Z is the CoT.

he2e : X → Y : end-to-end restriction of h

hCoT : X → Z : CoT restriction of h

For example, H can be a class of sequence models (e.g.,
Transformers) that output a CoT trace z = (z1, . . . , zth(x)),
followed by the final output y.

34



PAC Learning under CoT Supervision

CoT learning algorithm

A : (X × Y × Z)∗ → YX , S = {(xi, yi, zi)}mi=1 7→ ĥ

We say A has sample complexity mH,D(ε, δ) if

m ≥ mH,D(ε, δ) =⇒ P
S∼Dm

[
P

x,y∼Dx,y

[A(S)(x) ̸= y] ≤ ε

]
≥ 1− δ

CoT learning algorithm observes (x, y, z): input, output, & CoT

Evaluation metric is end-to-end error
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Statistical Guarantees for Learning
under CoT Supervision



Goal: obtain statistical guarantees that characterize the
advantage of training with CoT supervision
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Central Challenge

The central challenge is the asymmetry between the training
objective and the testing objective.

Training Objective: CoT Risk

RCoT
D (h) := P

x,y,z∼D

[
(he2e(x), hCoT(x)) ̸= (y, z)

]
Test Objective: End-to-End Risk

Re2e
D (h) := P

x,y∼Dx,y

[
he2e(x) ̸= y

]
Asymmetry prevents direct application of standard learning
theory results.
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Possible approach: bound CoT risk instead

Recent related work by Joshi et al. (2025) [arXiv:2503.07932]
sidestep asymmetry by noting that

RCoT
D (h) := P

x,y,z∼D

[
(he2e(x), hCoT(x)) ̸= (y, z)

]
≤ P

x,y∼Dx,y

[
he2e(x) ̸= y

]
=: Re2e

D (h),∀h ∈ H

Approach: establish a guarantee on the CoT risk instead of
the end-to-end risk

This problem is now symmetric because both training and
testing objective are CoT error; can apply standard learning
theory results
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Joshi et al.’s Sample Complexity

This implies a sample complexity of

O
(
VC(LCoT(H))

ε

)

for learning with an error ≤ ε.

LCoT(H) is the CoT loss class

LCoT(H) :=
{
ℓCoT
h : (x, y, z) 7→ 1{h(x) ̸= (y, z)} : h ∈ H

}

The main technical innovation of Joshi et al. (2025) is bounding VC(LCoT(H)) for “autoregressive” or
“iterated” function classes.
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Limitations of this analysis

• This gives the same O(1/ε) rate as in standard
end-to-end supervision

• Intuitively, observing the CoT z provides more
information and should enable faster statistical rates .

• Need a more refined analysis that explicitly links the two
different risks and quantifies the “information content”
per observed CoT sample
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We need to explicitly capture the amount of information
encoded in the CoT for distinguishing hypotheses in the
hypothesis class.
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New Concept: Chain-of-Thought Information

For a CoT hypothesis class H ⊂ (Y × Z)X and distribution D
over X × Y × Z realizable by H, the CoT information is the
function

ICoT
D (ε;H) := inf

h∈∆e2e
D (ε;H)

{
− log P

x,y,z∼D

[
(hCoT(x), he2e(x)) = (y, z)

]}
,

where

∆e2e
D (ε;H) :=

{
h ∈ H : P

x,y

[
he2e(x) ̸= y

]
> ε

}
The CoT Information captures the statistical rate of CoT
learning
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Properties of the CoT Information

• ICoT
D (ε;H) ≥ ε

• ICoT
D (ε;H) is monotonically increasing in ε

• ICoT
D (ε;H) is monotonically decreasing in H

43



CoT Information: Intuition

• When the CoT information is large, observing the CoT
reveals additional information about the target
hypothesis

• Alternative hypotheses can’t “fake” the reasoning steps in
the target’s CoT

• A CoT sample is more valuable than an end-to-end
sample
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Key result: CoT information captures the statistical rate of CoT
Learning

Learning under CoT supervision
The CoT consistency rule
CoT-Cons(S;H) := {h ∈ H : he2e(xi) = yi, h

CoT(xi) = zi, ∀i}
has end-to-end error sample complexity

m(ε, δ) =
log |H|+ log(1/δ)

ICoT
D (ε;H)

.

I.e., m ≥ m(ε, δ) implies that w.p. ≥ 1− δ over S ∼ Dm

∀h ∈ CoT-Cons(S;H), Re2e
D (h) = P

x,y

[
he2e ̸= y

]
≤ ε

45



Take away

1/ε rate improved to potentially much faster 1/ICoT
D (ε;H)

The ratio
ICoT
D (ε;H)

ε

can be interpreted as

how many end-to-end samples is one CoT sample worth?
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Geometry of CoT Information

H H H

h⋆

E2E-Cons(Sm;H)

CoT-Cons(Sm;H)

ε ≍ d/m

ε ≍ (ICoT
D,h⋆

)−1(d/m)

Legend

Increasing Sample Size m
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Infinite Classes

The result can be extended to infinite classes
Learning Infinite Classes with CoT Supervision
For infinite classes, the CoT consistency rule
CoT-Cons(S;H) := {h ∈ H : he2e(xi) = yi, h

CoT(xi) = zi, ∀i}
has end-to-end error sample complexity

m(ε, δ) = O

VC(LCoT(H)) · log
(

1
ICoT
D (ε;H)

+ 1
)
+ log(1/δ)

ICoT
D (ε;H)

 .

Recall, LCoT(H) is the CoT loss class.
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Preview: the agnostic setting

So far in the talk, we’ve addressed the realizable setting (i.e.,
distribution D over (x, y, z) is realizable by H)

What if D is not realizable by H?
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Preview: the agnostic setting

In general, CoT supervision can be detrimental in the agnostic
setting (unlike the realizable).

Example
Let D be a distribution over X × Y × Z such that the output
component is realizable by H but the CoT component is not
realizable. In particular, let D be such that infh∈HRe2e

D (h) = 0

but infh∈HRCoT
D (h) = 1. Then, CoT-ERM provides no

guarantees since CoT-ERM(S;H) = H,∀S. By contrast,
end-to-end learning is possible with sample complexity
O(1/ε ·VC(Le2e(H))).
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Preview: Extension of the CoT Information to the Agnostic Set-
ting

To extend our results to the agnostic setting, we define a
variant of the CoT information that links the excess CoT risk
with the excess end-to-end risk.

This variant of the CoT information measures how aligned the
observed CoT in the data distribution is with the hypothesis
class.

For more on this, please see paper
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Information-Theoretic Lower Bounds



So far: statistical upper bounds — “CoT supervision enables
learning at least [this fast]”

Answer expressed in terms of CoT Information
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To really determine if the CoT information measure is
fundamentally the correct characterization, we also need
corresponding lower bounds.

I.e., “Learning with CoT supervision requires at least [this
many] samples”
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Lower Bounds

Lower Bound: 2-Point Method

Fix a distribution D over X . Let x1, . . . , xmi.i.d.∼ D. For any
h⋆ ∈ H, if the sample size satisfies

m <
log(1/δ)

ICoT
D,h⋆

(ε;H)
,

then with probability at least δ there exists h ∈ H with
end-to-end error at least ε which is indistinguishable from
h⋆ on the sample. Moreover, for any algorithm A,

sup
h⋆∈H

E
S∼P⊗

h⋆

[
Re2e

D (A(S))
]
≥ 1

2
sup
h⋆∈H
ε>0

ε · exp(−m · ICoT
D,h⋆

(ε;H)).

Idea: reduce to binary hypotheses testing (LeCam, 1973). 54



This lower bound exhibits the expected scaling wrt the error
parameter ε: CoT information ICoT

D (ε;H) appears

But... doesn’t scale with size(H): limitation of 2-point method

Next: a lower bound that scales with size(H) via Fano’s method
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Lower Bounds

Lower Bound: Fano’s Method

Fix a distribution D over X . Let x1, . . . , xmi.i.d.∼ D. For any
algorithm A, if the sample size satisfies

m ≤
logM(H; de2eD , ε)

2 ·
(
CQ · supπ E

h1,h2∼π

[
ICoT
D (h1, h2)

]
+ log 2

)
then the end-to-end error must be large for some h⋆, i.e.,

sup
h⋆∈H

P
S∼P⊗

h⋆

[
Re2e

D,h⋆
(A(S)) ≥ ε/2

]
≥ 1

2

Idea: pack H w.r.t. end-to-end metric; use Fano’s inequality
and relate MI to CoT information. 56



Take away

Lower bounds validate CoT Information as a fundamental
measure of statistical complexity in learning with CoT

supervision.
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Simulations



How well does the CoT Information theory capture the
statistical advantage of training with CoT supervision in

practice?
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Basic Experimental Set Up

• Consider some CoT hypothesis class H ⊂ (Y × Z)X

• Fix a data distribution D and a reference hypothesis h⋆

• Compute the CoT information function ICoT
D,h⋆

(ε;H)

• Run simulations to evaluate the statistical rates of
learning with E2E-Cons (end-to-end supervision) vs.
CoT-Cons (CoT consistency)

Does ICoT
D,h⋆

(ε;H) accurately capture the statistical advantage?

Here, we consider finite H and compute everything exactly.
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Example 1: Linear Autoregressive Model

In practice, CoT supervision implemented via sequence model
class (e.g., Transformers) trained to generate CoT as a
sequence token-by-token, before returning final output.

Consider a simple form of such autoregressive generation:
generate tokens autoregressively for T steps by linear
function of fixed-size window of history
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Example 1: Linear Autoregressive Model

X = Σ∗,Z = ΣT ,Y = Σ. Take Σ = {0, 1}.

Linear next-token generation:

fw : x 7→ (x, z) ∈ {0, 1}|x|+1, z = 1

{
d−1∑
i=0

wi · xn−i ≥ 0

}
.

Hypothesis class H = {hw = (hCoT
w , he2ew ) : w ∈ W}, where

hCoT
w : x 7→ (z1, ..., zT ), h

e2e
w : x 7→ zT

(x, (z1, . . . , zT )) = (fw ◦ · · · ◦ fw)︸ ︷︷ ︸
T times

(x).

Window size d = 8, # iterations T = 16, weight class
W = {−1, 0,+1}d.

61



0.0 0.2 0.4 0.6 0.8 1.0

(h e2e1 (x) h e2e2 (x))

0

1

2

3

4

5

IC
oT
D

(h
1
,h

2
)

Relative CoT information between pairs of hypotheses vs.
end-to-end disagreement.
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Take away

limε→0 ICoT
D (ε;H)/ε+ ≈ 6, suggesting a 6× gain in

sample-efficiency.

Empirical sample complexity indicates a ≈ 5× advantage for
CoT supervision.

65



Example 2: Learning Regular Languages

Let L be a regular language.

End-to-end function is membership in L

he2e(x) =

1, if x ∈ L

0, otherwise

Chain-of-thought is sequence of states for DFA recognizing L

hCoT(x) = (z1, . . . , zn),

where DFA has state transitions zt
xt→ zt+1.
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Example 2: Learning regular languages
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Take away

limε→0 ICoT
D (ε;H)/ε+ ≈ 600, suggesting a 600× gain in

sample-efficiency.

Empirical sample complexity gains of 102 − 103× for CoT
compared to E2E.
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Extensions: Applying CoT Information to Complex Infinite
Classes

Informal
The CoT information ICoT

D (ε;H) can be estimated
consistently from random samples uniformly in ε ∈ (0, 1).

Implication: We can estimate the CoT information for
complex classes (e.g., neural networks) by setting up an
appropriate optimization problem on random CoT samples.

This provides a means of quantifying the value of CoT
supervision in different model classes.

For example, compare different methods of generating CoT
traces to train on.
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Concluding Remarks



Summary & Concluding Remarks

• Extension of statistical learning theory to CoT settings
• Information-theoretic characterization of the statistical

advantage of CoT supervision
• Many open questions and directions for future work: role

of CoT in OOD generalization, use of RL to learn CoT
reasoning, scaling, optimal CoT representation, etc.
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Thank You
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Discussion Time...

• Joint work with Omar Montasser & John Lafferty
• Supported by: ARNI NSF AI Institute
• Paper: arXiv:2505.15927 / NeurIPS ’25
• Personal webpage: https://awni.xyz
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