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A Question for ChatGPT...

Question: Which number is larger, 9.9 or 9.10?



ChatGPT 5 Instant

= B > ChatGPT5 Instant v @

Q: Which number is larger, 9.9 or 9.10?

A:9.10

@O P

+  Ask anything g

ChatGPT can make mistakes. Check important info.




ChatGPT 5 Thinking

= B > ChatGPT 5 Thinking v ©

Which number is larger, 9.9 or 9.10?

Thought for 7s

® The difference between 9.9 and 9.10 is subtle but important. In
decimal notation, trailing zeros don't change the value, so 9.10 is the
same as 9.1. But in versioning, 9.10 could be considered larger than
9.9. For a basic comparison, 9.90 is greater than 9.1, so 9.9 is larger.
I'll keep it clear and concise.

© Done
Q: Which is larger, 9.9 or 9.10?

A 99 N2

Ask anything
+ @ Thinking v 9

ChatGPT can make mistakes. Check important info.




Another example

hmm... Let’s try another question.

Question: A forest has 1000 trees. Each year, loggers cut down
half of the trees remaining at the start of the year. In the same
year, conservationists plant 100 new trees at the end of the
year. After this process repeats for two years, how many trees
are in the forest?



ChatGPT 5 Instant

- B >

ChatGPT 5 Instant v ©

Q: A forest has 1000 trees. Each year, loggers cut down half
of the trees remaining at the start of the year. In the same
year, conservationists plant 100 new trees at the end of the
year. After this process repeats for two years, how many
trees are in the forest?

A: 350

[5] @ (J] vee

+  Ask anything

g e

ChatGPT can make mistakes. Check important info.




ChatGPT 5 Thinking

=® £ > ChatGPT 5 Thinking v ©

A forest has 1000 trees. Each year, loggers cut down half of
the trees remaining at the start of the year. In the same
year, conservationists plant 100 new trees at the end of the
year. After this process repeats for two years, how many
trees are in the forest? Think step by step.

Thought for 23s

Q: A forest has 1000 trees. Each year, loggers cut down half of the trees remaining at the
start of the year. In the same year, conservationists plant 100 new trees at the end of the

year. After this process repeats for two years, how many trees are in the forest?

A: 400 (Year 1: 1000 — 500 — 600; Year 2: 60 300 - 400)

Ask anything
+ @ Thinking v 9

ChatGPT can make mistakes. Check important info




What the CoT trace looks like (Courtesy of DeepSeek)

>

&' D ® Forest Tree Count After Two Years

& Thought for 6 seconds v

* We are given: "A forest has 1000 trees. Each year, loggers cut down half of the trees remaining
at the start of the year. In the same year, conservationists plant 100 new trees at the end of the

year. After this process repeats for two years, how many trees are in the forest?"

Interpret: Initially: 1000 trees.

Year 1: Start: 1000 trees. Loggers cut down half: so left: 500 trees. Then conservationists plant
100 new trees: so total becomes 500+100 = 600 trees.

Year 2: Start: 600 trees. Loggers cut down half: so left: 300 trees. Then conservationists plant
100 new trees: so total becomes 300+100 = 400 trees.

So answer: 400 trees.

Thus answer: 400.

—
@3 DeepThink ) @ Search 0]}
N ,/




One last example

Okay... One more...

Question: Suppose x + 2y — z =4, =3z — y + 2z = 10,
4x + y — 2z = 15. Solve for x, y, .



ChatGPT 5 Instant

R

— B > ChatGPT 5 Instant v

Q: Suppose x +2y -z =4, -3x -y +z =10, 4x +y -2z = 15.
Solve forx, y, z

Ar=3,y=2,2=4

o0 Y

+ Askanything 9 v

ChatGPT can make mistakes. Check important info.




ChatGPT 5 Thinking

= B > ChatGPT 5 Thinking v G
Now use (3): 4z + y — 2z = 15.
dz+ 2z +14) —2(5z +24) =15 =6z + 14 — 10z —48 =15 = —4z — 34 =15 = —4z
Then
49 98 56 42 21
y72x+1472(74)+14774 + 4= 4" g
49 245 96 149
= 24 = - M=—4 —=——.
z =5z + 5 < 1 > + 1 + 1 1
49 21 149
T VTt Ty
6
Ask anything
+ @ Thinking v 9
ChatGPT can make mistakes. Check important info.
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What's going on here?

+ ChatGPT Instant is attempting to produce the answer
immediately in one step.

« But... robustly computing the answers to these questions
involves a multi-step process.

« CoT training provides a form of intermediate supervision:
learning the “process” not just the “answer”

+ ChatGPT Thinking carries out the computation
step-by-step, emulating a learned problem-solving
procedure, enabling it to arrive at the correct answer.
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What's Going on Here?

+ Observation: CoT supervision improves accuracy on
reasoning tasks.

+ Question: How can we formalize and measure the
statistical advantage from CoT?

- Next: A learning-theoretic framework capturing this
advantage.
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Central questions

1. When does CoT reduce sample complexity vs. end-to-end
labels?

2. How do we quantify the added information in CoT traces?

3. What upper bounds/lower bounds govern CoT learning?

13



Answers to these questions in...

CoT Information: Improved Sample Complexity
under Chain-of-Thought Supervision

Awni Altabaa’ Omar Montasser> John Lafferty*
June 10, 2025

Abstract: Learning complex functions that involve multi-step IEA\()mné POst significant
challenge for standard supervised learning from inp tpi s. Cha f-thought (CoT)
supervision, which provides intermediate reasoning steps together with the final output, has
emerged as a powerful empirical technique, underpinning much of the recent progress in the
reasoning capabilities of large language models. This paper develops a statistical theory of
learning under CoT supervision. A key characteristic of the CoT setting, in contrast to standard
supervision, is the mismatch between the training objective (CoT risk) and the test objective
(end-to-end risk). A central part of our analysis, distinguished from prior work, is explicitly
linking those two types of risk to achieve sharper sample complexity bounds. Thi achieved
via the CoT information measure IC"I‘ ‘H), which quantifies the additional discriminative
power gained from observing the reasoning process. The main theoretical results demonstrate
how CoT supervision can yield significantly faster learning rates compared to standard E2E
supervision. Specifically, it is shown that the sample complexity required to achieve a target E2E
error € scales as d/Z85L (M), where d is a measure of hypothesis class complexity, which
can be much faster than standard d/« rates. Information-theoretic lower bounds in terms of the
CoT information are also obtained. Together, these results suggest that CoT information is a
fundamental measure of statistical complexity for learning under chain-of-thought supervision.

505.15927v1 [statML] 21 May 2025

To be presented at NeurlPS '25
1%
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Omar Montasser John Lafferty
Yale Yale
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Part I: Chain-of-Thought in LLMs, in practice
« Part Il: Formalizing CoT-Supervised learning
« Part lll: Upper Bounds + “CoT Information”

« Part IV: Information-theoretic Lower Bounds
« Part V: Simulations

16



Chain-of-Thought in Large Language
Models




A Hitchhiker's Guide to Building an LLM

- O_—

’ \ S
/ © ©°C©
Pre-training Supervised Post-Training

Fine-Tuning

17



A Hitchhiker's Guide to Building an LLM

Step 1: Pre-training (foundation modeling).
Goal: Learn broad world knowledge and language ability

Data + Objective: Next-token prediction objective on
internet-scale text.
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A Hitchhiker's Guide to Building an LLM

Step 2: Supervised Fine-Tuning.
Goal: Teach model to follow instructions and perform tasks
step-by-step.

Data + Objective: Smaller scale but high-quality
human-written demonstrations in Q/A format; includes
chain-of-thought style rationales”

“sometimes hidden at inference, depending on model

19



A Hitchhiker's Guide to Building an LLM

Step 3: Post-Training (Preference Optimization & Alignment)

Goal: align outputs to human preferences, enforce safety
policies, enable tool-use and function-calling

Data + Objective: varies; includes human preferences
(RLHF/DPO), SFT on tool-calling traces, synthetic data, ...

20



We will focus on the CoT supervision during SFT

what statistical advantage does it provide?

21



How to obtain CoT traces to train on?

22



« H

o W
Incredible opportunity with Amazon!
Hi Awni ,

Amazon is working on a number of exciting
machine learning projects aimed at building
out and improving our Al models, and we are
looking for qualified experts like yourself to
support us in our work! By combining human
intelligence with sophisticated machine
learning algorithms, we aim for our model’s
data in Mathematics to be meticulously
annotated and labeled, capturing nuances
that machines alone might miss. This blend
of human insight and technological precision
helps to ensure a responsible approach to
training our Al models that truly reflects
real-world complexities and subtleties.

What you can expect:

Flexibility: You can opt to complete as
many, or as few tasks as you prefer.
Complete tasks remotely from anywhere!

- Compensation: Ear $10-525 per task, with
each task taking 10-20 minutes—equivalent
10 $40-875 per hour. Choose your payment
schedule: daily, weekly, or bi-weekly!

Cutting-Edge Projects: You will play a part
in shaping the future of Al

Qualifications

-Bachelor's Degree

+Fluent in the English language

*Must be US Citizen or Green Card to
participate

«

Al Live Events | Strategy | Writer

Sponsored oct

Apply your Stats expertise— $85+/hr flexible, remote
work
Hi Awni!

I'm Alex with the Handshake Al team. I'm reaching out
because | think your Statistics expertise would make
you a great candidate for our Stats expert position with
the Handshake Al Fellowship program.

We partner with leading Al labs to advance how Al
understands specialized fields. As a Stats expert, you'll
help Al interpret complex data, improve predictive
models, and strengthen analytical reasoning.

What to know:
+ Compensation begins at $85+/hour, with potential
for increases
+ You work remotely and entirely on your own
dule
+ OPT/CPT Eligible, see program details for
conditions.
« The application takes about 10 minutes, followed
by training and practice exercises
+ Once approved, you'll join a priority pool considered
for ongoing and upcoming Al lab projects
This is paid, flexible work that applies your academic
training while building your professional profile.
If you'e curious, you can

Best regards,

Handshake Al

’_m (He/Him) - 428 AM

Mercor: Partnering with Elite STEM Talent
Hey Awni

We are currently running a project with one
of the top Al Labs where we would love to
have candidates with a PhD in STEM working
with us. Your Linkedin profile is incredible so
I wanted to send an email to see if you would
are open to new opportunities. You can learn
more and apply on our platform here

Screening Process: After submitting your
resume, you will complete a brief Al interview
(that s the only step in the process).

Pay for the role is: 55-90 USD/hr. tis part time
(10-20 hrs/ week), completely remote and
asynchronous. We have already started on
the project and expanding so the timeline is
pretty immediate

About Mercor: We'e a staffing company
based in San Francisco, CA valued at $2B
and backed by investors like Benchmark,
General Catalyst, Peter Thiel etc. We've paid
out 12 million dollars to over 3k people and
specialize in recruiting talented experts for
leading tech companies.

Thanks

Technical Project Manager @ Mercor
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= a @#mn FINANCIAL TIMES & My Accous
Artificial intelligence

Al groups spend to replace low-cost ‘data labellers’ with
high-paid experts

Industry shifts from paying gig economy workers in Africa and Asia in push fo build
‘smarter’ models

‘X‘ f ‘in’ﬁ,smre [ save

Melissa Heikkila in London

Published JUL 202025 Aamg

Top artificial intelligence groups are replacing low-cost “data labellers” in
Africa and Asia with highly paid industry specialists, in the latest push to build

“smarter” and more powerful models.

Companies such as Scale A, Turing and Toloka are hiring experts in fields such
as biology and finance to help AI groups create more sophisticated training

data that is crucial for developing the next generation of Al systems.

The rise of so-called “reasoning” models, such as OpenAI’s 03 and Google’s

24



How to get a dataset of CoT Traces?

« Human-authored : e.g., domain experts or trained
annotators; or mined from educational content (e.g.,
step-by-step solutions in textbooks)

« Model-generated : traces generated by prompting,
filtered via self-consistency or self-verification

« Hybrid : model generates, humans filter/rate/edit

« Programmatic synthesis : for certain tasks, it may be
possible to generate traces programmatically

Cobbe et al. [arXiv:2110.14168], Wang et al. [arXiv:2203.11171],
Zelikman et al. [arXiv:2203.14465], Lightman et al. [arXiv:2305.20050]

25



Our Model of CoT

For us: we will abstract away from the specific method of
obtaining CoT traces or their format (e.g., natural language or
otherwise)

We assume the CoT dataset exists, and ask:
What statistical advantage does training with CoT confer

compared to traditional supervised learning from
input-output examples?

26



Formalizing Learning with CoT
Supervision




Two Aspects of Chain-of-Thought Theory

1. Function Approximation — Expanded representational
capacity
« lots of work here; pretty well-understood”
2. Statistical — More rapid & sample-efficient learning
« less understood; our focus for this work

*
e.g., Pérez et al. [arXiv:1901.03429], Merrill & Sabharwal [arXiv:2310.07923], Li et al. [arXiv:2402.12875]

27



Traditional Supervised Learning

Want to learn h, : X — Y in some function class H c Y~
Observe labeled examples (z;,y;) from random inputs xii‘i&d‘D,
with label y; = hy(x;)

Learning algorithm maps training sample to predictor:
Az S ={(zi,y:) Yy = b
Goal: achieve small prediction error

R(h):= B |h) #y] <e

consider the realizable setting for now

28



Basic intuition: standard end-to-end learning

Suppose we want to distinguish two hypotheses H = {h1, ho}.

We can distinguish them once we observe z such that
hl (x) 7& hg(x)
If IP’D [h1(z) # ho(z)] = €, this will take

g

samples.

29



Sample Complexity in Classical Statistical Learning

Extend to larger classes (> 2 hypotheses) via union bound

Gives sample complexity O (log |H| /<), scaling with class
size/complexity |#| and error parameter «.

(Or: vC dimension, Rademacher, Covering Numbers, etc.)

We will be mainly interested in the e-dependence in the
denominator, interpreting it as “the amount of information
per observed sample”

e.g., under noise (agnostic setting), with less “information” per sample, the rate is 1/£2; under low-noise
conditions, we interpolate between 1 /& and 1 /&2

30



Challenges of Classical (end-to-end) Learning for Long-Form

Reasoning Problems

- What if we want to learn very complicated functions h,?

« E.g., w/ modern LLMs, want to learn long-form multi-step
reasoning: mathematical reasoning, coding, etc...

« Statistically very difficult to learn these complex
multi-step functions

+ Observing input-output examples (z;,y;) alone reveals
relatively little information about the function A,

31



Idea: Train with a stronger signal

« Provide additional information to the learner

 Not only input-output pairs, but also expose step-by-step
computational trace

« Reveals more information that allows identifying function
to be learned faster

32



Intuition (Preview): Why this enables more rapid learning?

Suppose instead that A, ho emit two observable outputs:
y=h®(z) AND z=h%T(z)

Then, hy, hy can be distinguished if we observe = where either

R (2) # h§Pe(z) OR AL°T(2) # hS°T (),

It's now easier to distinguish the two hypotheses (possibly
much easier).

Let I(e) == P [h§%°(z) # h$*(z) OR ATOT(z) # hST(2)] > e.

Now only need O (1/I(g)) samples.

33



CoT Hypothesis Class

We adopt an abstract definition of CoT hypothesis classes.

CoT Hypothesis Class

Afamily H c (Y x 2)* of functions h : X — Y x Z, where
y € Y is the final output and z € Z is the CoT.

he%e : X — ): end-to-end restriction of h
hCT . X — Z: CoT restriction of h
For example, # can be a class of sequence models (e.g.,

Transformers) that output a CoT trace z = (21, .. ., Z, (2))s
followed by the final output .

34



PAC Learning under CoT Supervision

CoT learning algorithm
A (X xYx 2 =YY S ={(x,vi,2)} % — h

We say A has sample complexity my; p(e, d) if

m > myp(e,d) = P P [AS)(z) £y <e|>1-0
S~D™ |2, y~Dyz .y

CoT learning algorithm observes (z,y, z): input, output, & CoT

Evaluation metric is end-to-end error

35



Statistical Guarantees for Learning
under CoT Supervision




Goal: obtain statistical guarantees that characterize the
advantage of training with CoT supervision

36



Central Challenge

The central challenge is the asymmetry between the training
objective and the testing objective.

Training Objective: CoT Risk

R (h) == P [(A%(2),hT(2)) # (y,2)]

z,y,2~D

Test Objective: End-to-End Risk

Asymmetry prevents direct application of standard learning
theory results.

37



Possible approach: bound CoT risk instead

Recent related work by Joshi et al. (2025) [arXiv:2503.07932]
sidestep asymmetry by noting that
RET(h) = B [(h(2), k% (2)) # (3.2)]
< P [h%%¢(2) # y] =t RH°(h),Vh € H
T, Y~Lax,y
Approach: establish a guarantee on the CoT risk instead of
the end-to-end risk

This problem is now symmetric because both training and
testing objective are CoT error; can apply standard learning
theory results

38



Joshi et al's Sample Complexity

This implies a sample complexity of

o <vc<£C°T<H>>>

€

for learning with an error < «.

LT (H) is the CoT loss class

LCTH) == {£5°T : (z,y,2) = L{h(z) # (y,2)} : h € H}

The main technical innovation of Joshi et al. (2025) is bounding VC/(£C°T (#)) for “autoregressive” or
“iterated” function classes.

39



Limitations of this analysis

+ This gives the same O(1/¢) rate as in standard
end-to-end supervision

« Intuitively, observing the CoT z provides more
information and should enable faster statistical rates .

« Need a more refined analysis that explicitly links the two
different risks and quantifies the “information content”
per observed CoT sample

40



We need to explicitly capture the amount of information
encoded in the CoT for distinguishing hypotheses in the
hypothesis class.

A



New Concept: Chain-of-Thought Information

For a CoT hypothesis class # c (Y x Z)¥ and distribution D
over X x Y x Z realizable by #, the CoT information is the

function

ICOT eH) = inf {—10 P hCOT . ’he2e — (y, }?
P ( ) hGA}’Dgle(s;’H) ggmy’zw’D [( ( ) (x)) (y Z)}
where

AZe(e;H) = {h SN x]Py [h%%°(z) # y] > 8}

The CoT Information captures the statistical rate of CoT
learning

42



Properties of the CoT Information

* I5N (e H)
« Z5°T (¢; M) is monotonically increasing in ¢

Y

€

« Z5°T (e; 1) is monotonically decreasing in H

43



CoT Information: Intuition

« When the CoT information is large, observing the CoT
reveals additional information about the target
hypothesis

- Alternative hypotheses can't “fake” the reasoning steps in
the target’s CoT

« A CoT sample is more valuable than an end-to-end
sample

44



Key result: CoT information captures the statistical rate of CoT

Learning

Learning under CoT supervision

The CoT consistency rule

CoT-Cons(S;H) := {h € H : h°%(z;) = y;, hC°T (2;) = 2, Vi}
has end-to-end error sample complexity

log |H| + log(1/9)
m(e,0) = I5°T(g;H)

l.e., m > m(e,d) implies that w.p. > 1 — § over S ~ D™

Vh € CoT-Cons(S;H), RE°(h) = P [ #y] <e
w?y

45



1/¢ rate improved to potentially much faster 1/Z5° (e; H)

The ratio
15" (e H)

€

can be interpreted as

how many end-to-end samples is one CoT sample worth?

46



Geometry of CoT Information

H Legend

o h,

c © E2E-Cons(Sm; H)
\ © CoT-Cons(Sy,; H)
— exd/m

4
e = (TE) T (d/m)

g

Increasing Sample Size m
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Infinite Classes

The result can be extended to infinite classes

Learning Infinite Classes with CoT Supervision

For infinite classes, the CoT consistency rule
CoT-Cons(S;H) := {h € H : h°%(z;) = y;, hC°T (2;) = 2, Vi}
has end-to-end error sample complexity

)0 (vc(ccoT(H)) log (Zorme +1) + 1og(1/5)) |

T (e H)

Recall, L°T(H) is the CoT loss class.
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Preview: the agnostic setting

So far in the talk, we've addressed the realizable setting (i.e.,
distribution D over (z,, z) is realizable by #)

What if D is not realizable by H?

49



Preview: the agnostic setting

In general, CoT supervision can be detrimental in the agnostic
setting (unlike the realizable).

Example

Let D be a distribution over X x ) x Z such that the output
component is realizable by # but the CoT component is not
realizable. In particular, let D be such that inf,cy R$2°(h) = 0
but infjcqy R$°T(h) = 1. Then, CoT-ERM provides no
guarantees since CoT-ERM(S; H) = H,VS. By contrast,
end-to-end learning is possible with sample complexity
O(1/e - VC(L?(H))).

50



Preview: Extension of the CoT Information to the Agnostic Set-

ting

To extend our results to the agnostic setting, we define a
variant of the CoT information that links the excess CoT risk
with the excess end-to-end risk.

This variant of the CoT information measures how aligned the
observed CoT in the data distribution is with the hypothesis
class.

For more on this, please see paper
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Information-Theoretic Lower Bounds




So far: statistical upper bounds — “CoT supervision enables
learning at least [this fast]”

Answer expressed in terms of CoT Information

52



To really determine if the CoT information measure is
fundamentally the correct characterization, we also need
corresponding lower bounds.

l.e., “Learning with CoT supervision requires at least [this
many] samples”

53



Lower Bounds

Lower Bound: 2-Point Method

Fix a distribution D over X. Let 2, .. ., :pmi‘i&ﬁj'D. For any
h, € H, if the sample size satisfies

_ log(1/0)
5 (M)’

then with probability at least ¢ there exists h € H with
end-to-end error at least € which is indistinguishable from
h, on the sample. Moreover, for any algorithm A,

1
sup E [RE(A(S))] > = sup e-exp(—m - I5%. (e H)).
he€H S~PE 2 heeH ’
£>

Idea: reduce to binary hypotheses testing (LeCam, 1973). 54



This lower bound exhibits the expected scaling wrt the error
parameter e: CoT information Z5°T (; H) appears

But... doesn’t scale with size(#): limitation of 2-point method

Next: a lower bound that scales with size(#) via Fano’s method

55



Lower Bounds

Lower Bound: Fano’'s Method

Fix a distribution D over X. Let 2, .. ., :pmi‘i&ﬁj'D. For any
algorithm A, if the sample size satisfies

log M (H;d$3¢, €)

m <
[Z5°T (R, ha)] + log 2)

2. <CQ-sup7rh }IFZ
1,

2~T

then the end-to-end error must be large for some 4,, i.e.,

sup P[RS, (A(S) > /2] >
hy€H S~P2 ’

NN

Idea: pack # w.rt. end-to-end metric; use Fano’s inequality

and relate Ml to CoT information. ”



Lower bounds validate CoT Information as a fundamental
measure of statistical complexity in learning with CoT
supervision.
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Simulations




How well does the CoT Information theory capture the
statistical advantage of training with CoT supervision in
practice?
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Basic Experimental Set Up

- Consider some CoT hypothesis class # C (Y x Z)*
- Fix a data distribution D and a reference hypothesis h,
« Compute the CoT information function IS?,}: (e;H)

« Run simulations to evaluate the statistical rates of
learning with E2E-Cons (end-to-end supervision) vs.
CoT-Cons (CoT consistency)

Does Igf}}: (e; H) accurately capture the statistical advantage?

Here, we consider finite 4 and compute everything exactly.
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Example 1: Linear Autoregressive Model

In practice, CoT supervision implemented via sequence model
class (e.g., Transformers) trained to generate CoT as a
sequence token-by-token, before returning final output.

Consider a simple form of such autoregressive generation:
generate tokens autoregressively for 7" steps by linear
function of fixed-size window of history

60



Example 1: Linear Autoregressive Model

X=x*2Z=x"T )y =13 Take ¥ = {0,1}.

Linear next-token generation:

d—1
fu i@ (0, 2) € {0,1}2H, 2 — 1{sz--xn-z- > O}'

i=0
Hypothesis class H = {h,, = (h$°T, he?) : w € W}, where
AT @ s (21, ..., 27), B2 @ 27

(937 (Zlv"sz)) = (fw Qooc Ofw)(w)'
-~

T times

Window size d = 8, # iterations T' = 16, weight class
W ={-1,0,+1}%
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Empirical Sample Complexity

100 Learning Rule
CoT-Cons
80 F —— E2E-Cons
Error Type
60 [ — E2E Error
-== CoT Error
10 ; [
s
o
20 [
] _/J_r '________,__'_,_,_l
0 S oo
10° 107! 1072 1073

€

(a) Empirical sample complexity.

1.0

0.8

0.6 /
0.2 / Learning Rule ]

CoT-Cons

0.0 — E2BComs |

10° 10! 10?
Sample Size m

P(L(A(Sm))

(b) Empirical probability of each
learning rule returning a predictor
with zero error.
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lim._,0 Z5°T (;H) /et ~ 6, suggesting a 6x gain in
sample-efficiency.

Empirical sample complexity indicates a =~ 5x advantage for
CoT supervision.
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Example 2: Learning Regular Languages

Let £ be a regular language.

End-to-end function is membership in £

B () = 1, ifzel
0, otherwise

Chain-of-thought is sequence of states for DFA recognizing £
hCT () = (21, ..., 2n),

where DFA has state transitions z; =5 2.
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Example 2: Learning regular languages

9
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start
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detail (how much of the state trajectory is observed).
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Empirical Sample Complexity
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(b) Empirical probability of each
learning rule returning a
predictor with zero error.
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lim._,0 Z5°T (e;H) /e ~ 600, suggesting a 600x gain in
sample-efficiency.

Empirical sample complexity gains of 102 — 103 x for CoT
compared to E2E.
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Extensions: Applying CoT Information to Complex Infinite

Classes

Informal

The CoT information Z5°T (; H) can be estimated
consistently from random samples uniformly in e € (0, 1).

Implication: We can estimate the CoT information for
complex classes (e.g., neural networks) by setting up an
appropriate optimization problem on random CoT samples.

This provides a means of quantifying the value of CoT
supervision in different model classes.

For example, compare different methods of generating CoT
traces to train on.
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Concluding Remarks




Summary & Concluding Remarks

- Extension of statistical learning theory to CoT settings

« Information-theoretic characterization of the statistical
advantage of CoT supervision

« Many open questions and directions for future work: role
of CoT in OOD generalization, use of RL to learn CoT
reasoning, scaling, optimal CoT representation, etc.
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Thank You



Discussion Time...

« Joint work with Omar Montasser & John Lafferty
 Supported by: ARNI NSF Al Institute
« Paper: arXiv:2505.15927 / NeurIPS '25

» Personal webpage: https://awni.xyz
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