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Overview

⋄ Real-word sequential decision making problems often several

challenges, including

⋄ complex environments with large/continuous state spaces,

⋄ multiple agents interacting with each other,

⋄ agents may not be able to communicate with each other.

⋄ We propose a decentralized multi-agent reinforcement learning

algorithm for continuous-space stochastic games.

⋄ We characterize the stage-wise policy updating dynamics of the

algorithm, as well as the global policy-updating dynamics of a

broader class of best reply-based algorithms.
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Goal

Our goal is to design an algorithm which is “rational” in a decentralized

setting for each agent independently , and to analyze its global

policy-updating dynamics (e.g., w.r.t. convergence to equilibria)
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Stochastic Games

Definition (Stochastic game)

A stochastic game is a tuple
(
N ,X,

{
Ui

}
i∈N , T ,

{
ci
}
i∈N ,

{
βi
}
i∈N

)
,

where

1. N = {1, ..., N} is the set of N > 1 agents,

2. X is the state space, observed by all agents,

3. Ui is the action space of agent i; let U := U1 × · · · × UN ,

4. T : X× U → ∆(X) is the transition kernel, defining the probability

of transitioning to x′ ∈ X when the current state is x ∈ X and the

agents take the joint action u ∈ U,

5. ci : X× U → R is the reward function of agent i giving the cost

received when the system is in state x and the agents take joint

action u ,

6. βi ∈ [0, 1) is the discount factor for each agent.
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Objectives, best-replies and equilibrium

Each agent aims to minimize their own expected cumulative cost

J i
x(π) := Eπ

x

[ ∞∑
t=0

(βi)tci(Xt,Ut)

]
.

Definition (Best-reply)

Let ϵ ≥ 0 and let Γi be a subset of player i’s policies. A policy π∗i ∈ Γi

is an ϵ-best-reply to π−i in Γi if

J i
x(π

∗i,π−i) = inf
πi∈Γi

J i
x(π

i,π−i) + ϵ, ∀x ∈ X.

Furthermore, a 0-best-reply π∗i to π−i is called a strict best-reply to

(πi,π−i) if J i
x(π

∗i,π−i) < J i
x(π

i,π−i), for some x ∈ X

Definition (Equilibrium)

For ϵ ≥ 0, a policy π∗ ∈ Γ is an ϵ-equilibrium in Γ if π∗i is an

ϵ-best-reply to π∗−i for all i = 1, ..., N
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Quantization of the state space

High-level idea: group similar states into a finite set of representative

bins and learn a value function on those bins.

Consider the state space X. Suppose X is a Borel subset of a Euclidean

space.

Partition the state space X into M disjoint sets {Bi}Mi=1, s.t. ∪iBi = X.
In each Bi, choose any representative state yi ∈ Bi, and denote the

quantized finite state space by Y = {y1, ..., yM}.

We define the quantization mapping q : X → Y by q(x) = yi if x ∈ Bi.

This induces a “finite approximation MDP”

8



1. Background on Stochastic Games

2. Quantization of the state space

3. Decentralized Quantized Multi-Agent Q-Learning Algorithm

4. Analysis of Policy-Updating Dynamics

9



Decentralized Multi-Agent Q-Learning Algorithm

Algorithm 1: Algorithm for agent i

initialize πi
0 ∈ Π̂i

q, Q
i
0 ∈ Qi

q (arbitrary)

iterate k ≥ 0 (kth exploration phase)

iterate t = 1, ..., Tk

Quantize state: yit = qi(xt)

Choose action: ui
t =

πi
k(yt) w.p. 1− ρi

any ui ∈ Ui w.p. ρi

Receive ci(xt,ut) and xt+1 ∼ T
(
·
∣∣ xt, ui

t,u
−i
t

)
Quantize: yit+1 = qi(xt+1)

αi
t(y

i
t, u

i
t) =

(
1 +

∑t
s=tk

I
{
(yis, u

i
s) = (yit, u

i
t)
})−1

B̂R
i

δ(Q
i
t) =

{
γ̂ ∈ Π̂i

q : Q
i
t(y, γ̂(y)) ≤ minu∈Ui Qi

t(y, u) + δi, ∀y ∈ Yi
q

}
if πi

k ∈ B̂R
i

δ(Q
i
t) then π

i
k+1 = πi

k ;

else πi
k+1 ∈ B̂R

i

δ(Q
i
t);

Reset Qi
t to any Qi ∈ Qi

q (e.g.: Qi
t = 0)
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Near-optimality of policy updates

Theorem

Suppose all players use Algorithm 1 to select their actions. For any

ϵ > 0, there exists T̃ such that Tk ≥ T̃ implies

P
[∥∥∥Qi

Tk
− Q̂∗i

π−i
k,ρ

∥∥∥
∞

< ϵ

]
≥ 1− ϵ, ∀k ≥ 0, (1)

where πk is the baseline joint policy during the kth exploration phase and

πk,ρ is the perturbation of πk that is used for action selection.

Furthermore, for any η > 0, there exists a fine-enough quantization qi

such that the greedy policy with respect to Q̂∗i
π−i

ρ
is η-optimal in the

MDP environment where the other agents act according to π−i
ρ .
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Generalized class of best reply-based algorithms

Consider the following class of algorithms for policy updates:

Algorithm 2: Generalized Policy-Updating Process (for agent i)

set parameters

ψi(·; ·) some prob. dist. over Πi given a best-reply set

initialize πi
0 ∈ Πi (arbitrarily)

iterate k ≥ 0

if πi
k ∈ BRi(π−i) then πi

k+1 = πi
k;

else πi
k+1 = γi ∈ Πi w.p. ψi(γi;BRi(π−i));
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Analysis of policy-updating dynamics

Informal summary of results

The policy updating dynamics in the idealized process can be described

as an absorbing Markov chain and a closed form expression can be

derived for the probability of convergence to each equilibrium.

Stochastic algorithms which approximate such idealized policy updates

can be shown to have the same dynamics in the limit.

Using these tools, the quantized continuous-space algorithm can be

analyzed.
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