
On the Role of Information Structure in

Reinforcement Learning

Awni Altabaa

Yale University, Department of Statistics & Data Science



Table of contents

1. Reinforcement Learning at a High Level

2. A General Model that Captures Information Structure

3. Characterizing the “Complexity” of the Dynamics

4. A Robust Parameterization Amenable to Reinforcement Learning

5. Payoff: Characterizing the Sample Complexity of General

Reinforcement Learning Problems via Information Structure

6. Discussion

1



Reinforcement Learning at a

High Level



What is Reinforcement Learning, Really?

At the most basic level, reinforcement learning is the problem of learning

how to act through interaction with an environment.

Environment

Agent

actions observations
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Reinforcement Learning is Hard (in general)

Agent aims to learn a policy π which maximizes their objective.

For each choice of policy, there is an expected value for objective, V (π)

In the worst case, must try every possible policy.

# of policies is typically Ω
(
|action space||trajectory space|

)
Entirely impractical, especially as problem scales up.

Many real-world problems have structure that makes them easier to

handle.
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Making RL Tractable by imposing assumptions on Information

Structure

The reinforcement learning literature has identified classes of problems

that are tractable.

Most commonly studied is the Markov decision-process (MDP)

Assumes that state of system is “Markovian”—future depends only on

present, and not the past.

Under such an assumption, ϵ-optimal policy can be learned with

poly
(
S,A,H, ϵ−1

)
samples, where S is size of state space, A size of action space, H is time

horizon.

Compared to Ω(((SA)H)A) in worst case...
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When state is Markovian, learning is tractable
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The Real-world is not so simple...

This kind of assumption can be captured in the language of information

structure.

Information Structure = how events in the system occurring at different

points in time affect each other

MDPs make a very specific assumption on the system to make the

problem tractable.

Real-world sequential decision-making problems involve a complex and

time-varying interdependence of system variables
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Information Structure

In general, can think of a system as a sequence of variables or events

X1, X2, X3, . . . , XT

Each variable is either a system variable, describing some aspect of the

state of the system, or an action by the event.

The information structure describes, for each event of the system, what

subset of past events it depends on.

Example: MDPs assume the simplest possible information

structure—only immediate past.

Importance of “information structure” has long been recognized by

control community, but is comparatively unexplored in RL.
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Can we characterize the statistical complexity

of general reinforcement learning problems via

their information structure?
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A General Model that Captures

Information Structure



A General Model that Captures Information Structure

We need a general model equipped to capture information structure.

Controlled stochastic process: X1, . . . , XT

Need several ingredients:

1. Variable Structure. Which variables are system variables and which

are action variables. Partition of [T ] = S ∪ A
2. Information Structure. For t ∈ [T ], subset of past variables on

which Xt depends. It ⊂ [t− 1]. Defines “information space”

It :=
∏

s∈Tt
Xs.

3. System Kernels. Tt ∈ P(Xt | It) such that Xt ∼ Tt(· | {xs, s ∈ It}).
4. Observability. Subset of system variables observable to learning

algorithm O ⊂ S.
5. Reward structure. Reward function(s) for each agent.
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A General Model that Captures Information Structure

For system variables t ∈ S, information set It describes an aspect of

system dynamics.

For action variables t ∈ A, information set It describes information

available to agent at time of making decision.

This is an extremely general model.

• Captures events occurring simultaneously or sequentially.

• Captures single-agent or multi-agent problems

• Captures arbitrary system dynamics

E.g., commonly studied models like MDP, POMDP, Dec-POMDP,

POMG, are special cases.
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Preview: Statistical Complexity Characterized via Information

Structure

Theorem (Preview)

For any sequential decision-making problem with information with

information structure I = {It, t ∈ [T ]}, the sample complexity of

learning a near-optimal policy scales as f(I), for some function of the

information structure.

For the remainder of the talk, we will build towards this result.
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Characterizing the “Complexity”

of the Dynamics



A notion of complexity

We are interested in the complexity of the observable dynamics.

Full description of the system is

X1, X2, . . . , XT

But, learning agent can only observe and model

(Xh)h∈O∪A :=
(
Xt(1), . . . , Xt(H)

)
(Here, we index observables by h ∈ [H], H := |O ∪ A|)

To gauge how difficult it is to learn, we need to characterize the

“complexity” of the dynamics of the observable system variables
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A notion of complexity

A commonly studied notion of the complexity of dynamics is “rank”.

For h ∈ [H], define the dynamics matrix

[Dh]history,future := P [history, future | actions]

Definition

The rank of the dynamics matrices Dh, rh := rank(Dh), r := maxh rh,

characterize a notion of complexity of the observable system dynamics.

For our model, these are histories and futures of observable variables.
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Information-Structural Characterization of Rank of Dynamics

The information structure of a sequential decision-making problem

determines an upper bound on its rank.

Information structure can naturally be represented by a DAG G where

edges are determined by the information sets. I.e., (i, t) ∈ I ⇐⇒ i ∈ It.

We will derive a characterization of the rank in terms of this DAG

representation.

Definition (Information-Structural State)

Let G† be the DAG obtained from G by removing incoming edges

towards actions. For each h ∈ [H], let I†
h ⊂ [t(h)] be the minimal set

of past variables (observed or unobserved) which d-separate the past

observations (Xt(1), . . . , Xt(h)) from the future observations

(Xt(h+1), . . . , Xt(H)) in the DAG G†. Define I†h :=
∏

s∈I†
h
Xs.

Intuition: the subset of the past (whether observed or latent) which

forms a sufficient statistic for the future.
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Information-Structural Characterization of Rank of Dynamics

Theorem

The rank of the observable system dynamics of an arbitrary sequential

decision-making problem is bounded by rh ≤ |I†h|, r ≤ maxh∈[H]|I†h|.

Intuition: Information must “squeeze” through I†h (a bottleneck).

Hence, complexity must be bounded by size of I†h.
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Example: POMDP [1/2]
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Example: POMDP [2/2]
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The information structural state coincides with the Markovian state.
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Example: Dec-POMDP / POMG
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The information structural state coincides with the Markovian state.
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Example: “Mean-field”
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A mean-field-like information structure. I†h is mean-field state/action.
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Example: Point-to-Point Real-time Communication

x1 z1 y1 x1

x2 z2 y2 x2

x3 z3 y3 x3

x4 z4 y4 x4

x5 z5 y5 x5

X is source, z is encoding, y is output of noisy channel, x̂ is decoding.

Information-structural state varies at different points in time. Either

source, or source + encoding. 19



Example: m-step Limited Memory
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Information-structural state is m-step past.
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Example: Fully-Connected Information Structure
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Information-structural state is full history—motivating example:

intractable.
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A general theory towards understanding role of information

structure in reinforcement learning

In the worst case (fully-connected information structure), RL is

intractable.

So many possible information structures. Not just very simple ones like

MDPs/POMDPs.

RL is missing a general theory on the role of information-structure in

learning general sequential decision-making problems.
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Proof Sketch

By d-separation,

[Dh]history,future = P [history, future | actions]

= P [history | actions]
∑
i†h

P
[
i†h

∣∣∣ history]P [
future

∣∣∣ i†h]

Define Dh,1 ∈ R|history|×|I†h| and Dh,2 ∈ R|I†h|×|future| such that

Dh = Dh,1Dh,2.

∴ rank(Dh) ≤
∣∣∣I†h∣∣∣.
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A Robust Parameterization

Amenable to Reinforcement

Learning



Reinforcement Learning Requires Robust Representations

Key challenge in RL: Constructing representations which enable

robustly and efficiently modeling probabilities of system trajectories. I.e.,

probabilities of the form P [future | history].

We can use information-structure to do this in a general and systematic

way for arbitrary sequential decision-making problems.
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An identifiability condition

We introduce an “identifiability” condition that enables the construction

of such a parameterization.

Assumption (I†-weakly revealing)

At each point in time h ∈ [H], the m-step futures are informative about

the information structural state. I.e., for two mixtures of info-struct

state, the distribution of m-step futures are distinct.

i†h is the sufficient statistic of the system at time h. In general, not

observable. This assumption basically says, the observations are coupled

to i†h such that different i†h result in different distributions of observations.
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(Generalized) Predictive State Representations

With this, we can construct a “Observable Operator Model”

representation of the dynamics of this system, through its information

structure.

PSRs are a type of representation where a certain “prediction vector”

ψh(history) ∈ Rd summarizes all the needed information about the

history.

GenPSR Parameterization: {Mh : Xt(h) → Rd×d}h∈[H], ψ0, ϕH such

that

P
[
xt(1), . . . , xt(H)

]
= ϕH(xt(h))

⊺MH−1(xt(H−1)) · · ·M1(xt(1))ψ0

ψh(xt(1), . . . , xt(h)) =Mh(xt(h))ψh−1(xt(h−1)).
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Constructing a Robust Parameterization

Observables

Unobservables

ℎ

𝐺ℎ ∈ ℝℚℎ
𝑚×𝕀ℎ

†𝑞ℎ ∈ ℚℎ
𝑚

𝑚-step future

𝑖ℎ
† ∈ 𝕀ℎ

†

ഥℙ 𝑞ℎ 𝑖ℎ
†)

Information-structural state

This kind of representation can be constructed by exploiting the

information structure.

mh(future) := (G†
h)

⊺
[
P
[
future

∣∣∣ i†h]]
i†h

,[
Mh(xt(h))

]
future,· = mh−1(xt(h), future)

⊺.
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This Parameterization is Robust

If the identifiability condition is robust (in a minimum singular-value

sense), then this parameterization is robust.

I.e., when the error in estimating Mh is small, the error in the estimated

probabilities of trajectories is also small.

TV(Pθ̂,Pθ) ≲ α−1 D(θ̂, θ),

where α describes robustness of identifiability condition.

This makes it a good parameterization for reinforcement learning.
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Payoff: Characterizing the

Sample Complexity of General

Reinforcement Learning

Problems via Information

Structure



Information-structural characterization of statistical hardness

These tools that we developed enable us to characterize an upper bound

on the statistical hardness of a general reinforcement learning problem in

terms of its information structure.

We have a result that roughly says “any sequential decision-making

problem with an information structure I an be learned with a sample

complexity at most f(I)”
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Information-structural characterization of statistical hardness

Theorem

Suppose a sequential decision-making problem is I†-weakly revealing.

There exists an algorithm which learns an ϵ-optimal policy with a

sample complexity

1

ϵ2
× poly

(
1

α
,max

h

∣∣∣I†h∣∣∣ , Qm, A,H

)
In the game setting, the same assumption imply the existence of a

self-play algorithm that learns an ϵ-equilibrium (NE or CCE) with the

same sample complexity.

• α: robustness parameter assoc. w/ I†-weakly revealing condition

• I†h: information-structural state

• Qm: size of m-step trajectories.

• A: max size of actions space.

• H: time horizon.
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Proof idea

We prove this result by exhibiting an algorithm achieving this sample

complexity.

We crucially make use of the robust generalized PSR parameterization,

that we constructed by exploiting information structure.

Online algorithm. Basic outline:

1. Estimate confidence set for θ∗ according to genPSR param

2. Choose policy which explores optimally (i.e., visits trajectories for

which model gives high uncertainty)

Repeat until confidence set is small enough, then compute optimal policy

using estimated model.
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Discussion



Where does this leave us?

• Insights: information-structural perspective.

• Fundamental understanding of RL as a problem: what is and isn’t

possible?

• Practical implications? Information structure as an inductive bias.
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Thank you. Questions?

Thank you.

Joint work with: Zhuoran Yang (Faculty @ Yale S&DS)

Paper: https://arxiv.org/abs/2403.00993
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