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Reinforcement Learning at a
High Level



What is Reinforcement Learning, Really?

At the most basic level, reinforcement learning is the problem of learning
how to act through interaction with an environment.
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Reinforcement Learning is Hard (in general)

Agent aims to learn a policy m which maximizes their objective.

For each choice of policy, there is an expected value for objective, V()
In the worst case, must try every possible policy.

# of policies is typically <|action space||trajecmry Space')

Entirely impractical, especially as problem scales up.

Many real-world problems have structure that makes them easier to
handle.



Making RL Tractable by imposing assumptions on Information

Structure

The reinforcement learning literature has identified classes of problems
that are tractable.

Most commonly studied is the Markov decision-process (MDP)

Assumes that state of system is “Markovian”—future depends only on
present, and not the past.

Under such an assumption, e-optimal policy can be learned with
poly (S, A, H, e_l)

samples, where S is size of state space, A size of action space, H is time
horizon.

Compared to Q(((SA)7)4) in worst case...



When state is Markovian, learning is tractable




The Real-world is not so simple...

This kind of assumption can be captured in the language of information
structure.

Information Structure = how events in the system occurring at different
points in time affect each other

MDPs make a very specific assumption on the system to make the
problem tractable.

Real-world sequential decision-making problems involve a complex and
time-varying interdependence of system variables



Information Structure

In general, can think of a system as a sequence of variables or events

X1, X9,X3,..., X1

Each variable is either a system variable, describing some aspect of the
state of the system, or an action by the event.

The information structure describes, for each event of the system, what
subset of past events it depends on.

Example: MDPs assume the simplest possible information
structure—only immediate past.

Importance of “information structure” has long been recognized by
control community, but is comparatively unexplored in RL.



Can we characterize the statistical complexity
of general reinforcement learning problems via
their information structure?



A General Model that Captures
Information Structure



A General Model that Captures Information Structure

We need a general model equipped to capture information structure.
Controlled stochastic process: Xi,..., X

Need several ingredients:

1. Variable Structure. Which variables are system variables and which
are action variables. Partition of [T] =S U A

2. Information Structure. For ¢t € [T'], subset of past variables on
which X, depends. Z; C [t — 1]. Defines “information space”

Ht = HSE'T,‘, Xs
3. System Kernels. T; € P(X;|I;) such that X; ~ T;(- | {zs,s € T4}).

4. Observability. Subset of system variables observable to learning
algorithm O C S.

5. Reward structure. Reward function(s) for each agent.



A General Model that Captures Information Structure

For system variables ¢ € S, information set Z, describes an aspect of
system dynamics.

For action variables t € A, information set Z; describes information
available to agent at time of making decision.

This is an extremely general model.
e Captures events occurring simultaneously or sequentially.

e Captures single-agent or multi-agent problems

e Captures arbitrary system dynamics

E.g., commonly studied models like MDP, POMDP, Dec-POMDP,
POMG, are special cases.



Preview: Statistical Complexity Characterized via Information

Structure

Theorem (Preview)

For any sequential decision-making problem with information with
information structure T = {Z,t € [T}, the sample complexity of
learning a near-optimal policy scales as f(Z), for some function of the
information structure.

For the remainder of the talk, we will build towards this result.
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Characterizing the “Complexity”
of the Dynamics



A notion of complexity

We are interested in the complexity of the observable dynamics.

Full description of the system is

X17X27"'7XT

But, learning agent can only observe and model

(Xn)heoua = (Xt - - Xean)
(Here, we index observables by h € [H|, H := |O U AJ)

To gauge how difficult it is to learn, we need to characterize the
“complexity” of the dynamics of the observable system variables
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A notion of complexity

A commonly studied notion of the complexity of dynamics is “rank”.

For h € [H], define the dynamics matrix

[Dp]nistory, future = IP [history, future

actions]

The rank of the dynamics matrices Dy, 7y, := rank(Dy,), r := maxy 7,
characterize a notion of complexity of the observable system dynamics.

For our model, these are histories and futures of observable variables.



Information-Structural Characterization of Rank of Dynamics

The information structure of a sequential decision-making problem

determines an upper bound on its rank.

Information structure can naturally be represented by a DAG G where
edges are determined by the information sets. l.e., (i,t) € Z < i€ Z;.

We will derive a characterization of the rank in terms of this DAG

representation.

Definition (Information-Structural State)

Let G' be the DAG obtained from G by removing incoming edges
towards actions. For each h € [H], let I,t C [t(h)] be the minimal set
of past variables (observed or unobserved) which d-separate the past
observations (X (1), ..., Xy)) from the future observations
(Xuht1)s - - Xe(am) in the DAG GF. Define I} =TT, czt X..

Intuition: the subset of the past (whether observed or latent) which

forms a sufficient statistic for the future.
13



Information-Structural Characterization of Rank of Dynamics

The rank of the observable system dynamics of an arbitrary sequential
decision-making problem is bounded by rj, < |1, |,7 < maxpcm|l; |-

Information must “squeeze” through I} (a bottleneck).
Hence, complexity must be bounded by size of I .
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Example: POMDP [2/2]

L AL AL

The information structural state coincides with the Markovian state.
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mean-field state/action.
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Example: Point-to-Point Real-time Communication

| T—’ |
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X is source, z is encoding, ¥ is output of noisy channel, Z is decoding.

Information-structural state varies at different points in time. Either
source, or source + encoding. 19



Example: m-step Limited Memory
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Information-structural state is m-step past.
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Example: Fully-Connected Information Structure

Information-structural state is full history—motivating example:
intractable.
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A general theory towards understanding role of information

structure in reinforcement learning

In the worst case (fully-connected information structure), RL is
intractable.

So many possible information structures. Not just very simple ones like
MDPs/POMDPs.

RL is missing a general theory on the role of information-structure in
learning general sequential decision-making problems.

22



Proof Sketch

By d-separation,

[Dh)

= P [history, future | actions]

history,future

it
[/1i|

= P [history | actions] Z P [1,‘, ’ history} P [f’uture

h

Define Dy, 1 € RIbistory|X|L, | 3pd Dy s € RIT: [x[future] g\ch that
Dy, = Dy, 1Dy 0.

s.rank(Dp) < ’T,‘,‘
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A Robust Parameterization
Amenable to Reinforcement
Learning




Reinforcement Learning Requires Robust Representations

Key challenge in RL: Constructing representations which enable
robustly and efficiently modeling probabilities of system trajectories. l.e.,

probabilities of the form PP [future | history].

We can use information-structure to do this in a general and systematic
way for arbitrary sequential decision-making problems.
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An identifiability condition

We introduce an “identifiability” condition that enables the construction
of such a parameterization.

Assumption (Z'-weakly revealing)

At each point in time h € [H]|, the m-step futures are informative about
the information structural state. l.e., for two mixtures of info-struct
state, the distribution of m-step futures are distinct.

//', is the sufficient statistic of the system at time h. In general, not
observable. This assumption basically says, the observations are coupled
to ¢, such that different 7, result in different distributions of observations.
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(Generalized) Predictive State Representations

With this, we can construct a “Observable Operator Model”
representation of the dynamics of this system, through its information
structure.

PSRs are a type of representation where a certain “prediction vector”
Yy (history) € R? summarizes all the needed information about the
history.

GenPSR Parameterization: {M}, : Xy) — RdXd}he[H},wo,qﬁH such
that

P [@41ys - Teeeny | = Gr(Tny) "Mu—1(Tym—1)) - - - Ma(2e(1)) %o
Ur(Te(1), -+ Te(ny) = Mu(@een))Vn—1(Teh—1))-
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Constructing a Robust Parameterization

m-step future

' Ih I I\) hezl

P(an lif)
Unobservables (R | .lI:I O 3 =

iterl |

Information-structural state

This kind of representation can be constructed by exploiting the

information structure.

my (future) == (GL)T []P’ [future

1
[h:|:|,-i ?
?

[Mh(xt(h))] future,. = mp_1(Ty(), future)T.
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This Parameterization is Robust

If the identifiability condition is robust (in a minimum singular-value
sense), then this parameterization is robust.

I.e., when the error in estimating M}, is small, the error in the estimated
probabilities of trajectories is also small.

TV(P;, o) < a~'D(6,0),

where o describes robustness of identifiability condition.

This makes it a good parameterization for reinforcement learning.
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Payoff: Characterizing the
Sample Complexity of General
Reinforcement Learning
Problems via Information
Structure




Information-structural characterization of statistical hardness

These tools that we developed enable us to characterize an upper bound
on the statistical hardness of a general reinforcement learning problem in
terms of its information structure.

We have a result that roughly says “any sequential decision-making
problem with an information structure Z an be learned with a sample
complexity at most f(Z)"
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Information-structural characterization of statistical hardness

Theorem

Suppose a sequential decision-making problem is Zt-weakly revealing.
There exists an algorithm which learns an e-optimal policy with a

sample complexity
1 1 -
— X poly —,max‘ﬂ/,‘,Qm,A,H
€ o’ h

In the game setting, the same assumption imply the existence of a
self-play algorithm that learns an e-equilibrium (NE or CCE) with the
same sample complexity.

e «: robustness parameter assoc. w/ Z'-weakly revealing condition
e I} : information-structural state

e (), size of m-step trajectories.

e A: max size of actions space.

e H: time horizon.



We prove this result by exhibiting an algorithm achieving this sample
complexity.

We crucially make use of the robust generalized PSR parameterization,
that we constructed by exploiting information structure.

Online algorithm. Basic outline:

1. Estimate confidence set for 8* according to genPSR param

2. Choose policy which explores optimally (i.e., visits trajectories for
which model gives high uncertainty)

Repeat until confidence set is small enough, then compute optimal policy
using estimated model.
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Discussion




Where does this leave us?

e Insights: information-structural perspective.

e Fundamental understanding of RL as a problem: what is and isn't
possible?

e Practical implications? Information structure as an inductive bias.
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Thank you. Questions?

Thank you.

Zhuoran Yang (Faculty @ Yale S&DS)
https://arxiv.org/abs/2403.00993

3“5.«#
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