DISENTANGLING AND INTEGRATING RELATIONAL AND SENSORY INFORMATION IN TRANSFORMER ARCHITECTURES

Awni Altabaa, John Lafferty

May 30, 2025

Yale University arXiv:2405.16727, ICML '25

BIG PICTURE: WHY SHOULD WE CARE ABOUT "RELATIONAL REASONING"?

Hypothesis 0: Human & animal intelligence can be explained by a few core principles (rather than an encyclopedic list of heuristics)

Suggests the following goal: Study & uncover the inductive biases that humans & animals exploit to understand intelligence generally and inform design of AI Deep learning systems themselves exploit several key inductive biases that underly their empirical success

Goal of AI Research: Uncover a core set of inductive biases for DL that enable data-efficient learning and reasoning over wide range of tasks and modalities

Hypothesis 1: Relational reasoning is one of these fundamental principles of intelligence

FIRST: WHAT IS "RELATIONAL REASONING"?

Reasoning about relationships between objects and how they interact in a given context/scene

Perform comparisons under different attributes or features, at multiple levels of abstraction

Beyond recognizing individual objects by sensory pattern recognition; requires higher-order relationships

Clue to its importance: Humans have a natural ability (and a preference) to do relational reasoning

LET'S WALK THROUGH A COUPLE SIMPLE ILLUSTRATIVE EXAMPLES OF RELATIONAL TASKS

EXAMPLE: SET! CARD GAME

EXAMPLE: SET! CARD GAME

Example: Relational Games (Shanahan et al. 2020)

Relational Games tasks from Shanahan et al. (2020)

A Visual Relational Reasoning Task: determine whether a particular relation holds or not

RETURNING TO OUR ORIGINAL QUESTION: WHY SHOULD WE CARE ABOUT RELATIONAL REASONING?

A cornerstone of human intelligence

Underlies capabilities for

- analogy
- abstraction
- generalization

By relating new inputs to previously-seen stimuli, we form analogies and abstractions that allow us to systematically generalize. "IN THE LIMIT, RELATIONAL REASONING YIELDS UNIVERSAL INDUCTIVE GENERALIZATION FROM A FINITE AND OFTEN VERY SMALL SET OF OBSERVED CASES TO A POTENTIALLY INFINITE SET OF NOVEL INSTANCES ." — GOYAL & BENGIO (2022)

We'd like to take a step towards this central goal of AI research

Big Picture: Why should we care about "relational reasoning"?

Main Idea & Goal

Transformers: The Sensory and the Relational

Relational Attention

Dual Attention Transformer Architecture

Empirical Investigation

Concluding Remarks

MAIN IDEA & GOAL

Our Goal: Make progress towards a universal neural architecture with explicit relational computational mechanisms & inductive biases

HOW TO IMBUE TRANSFORMERS WITH EXPLICIT RELATIONAL INDUCTIVE BIASES

- Inductive Bias: intrinsic preferences over solution space
- View: Two types
 - *Additive:* imbue architecture with mechanism, and let it learn to use it
 - *Subtractive:* constrain the space of representations a model can compute

- "The Bitter Lesson" Rich Sutton
- Relational computational mechanisms parameterized by neural net & *learned*
 - scalable, general mechanisms;
 - \circ avoid domain-specific heuristic, human-engineering
- The versatility of the Transformer architecture suggests it may form a powerful starting point

SOME LESSONS FROM PREVIOUS WORK

Prior works on relational inductive biases

- Santoro et al. "A simple neural network module for relational reasoning' (2017)
- · Shanahan et al. "An Explicitly Relational Neural Network Architecture" (2020)
- · Kerg et al. "Inductive biases for relational tasks" (2022)
- Others...

Data-efficient relational reasoning requires inductive biases

- Standard neural models (e.g., Transformers) are data-<u>in</u>efficient at learning relational tasks; brittle OOD generalization
- Hypothesized Explanation: Neural networks overemphasize *individual object* representations while lacking explicit mechanisms for encoding and processing *relational* features.
- Common thread explored: constrain model to compute relational features—relational inductive biases

However, these models are narrow in domain They improve relational processing, but lose generality Empirical success limited to synthetic (purely relational) benchmarks

OUR GOAL: AUGMENT THE TRANSFORMER ARCHITECTURE WITH EXPLICIT RELATIONAL MECHANISMS & INDUCTIVE BIASES

TRANSFORMERS: THE SENSORY AND THE RELATIONAL

HOW TO IMBUE TRANSFORMERS WITH EXPLICIT RELATIONAL INDUCTIVE BIASES

Strength of Transformers: attention

Versatile information retrieval mechanism Composable in *circuits* to carry out complex computation (which we're now beginning to understand through systematic (mechanistic) interpretability work) Iterate two basic operations:

1. Information Retrieval: Attention

$$x'_i \leftarrow \sum_j \alpha_{ij} \phi_v(x_j)$$

2. Local Processing: Token-wise MLP

 $x'_i \leftarrow \mathrm{MLP}(x_i)$

1. Compute attention scores

$$\alpha_{ij} = \text{Softmax}([\langle \phi_q^{\text{attn}}(\mathbf{x}_i), \phi_k^{\text{attn}}(\mathbf{x}_j) \rangle]_{j=1}^n)_j$$

2. Retrieve weighted combination of sensory values in context

$$e_i \leftarrow \sum_j lpha_{ij} \phi_v(x_j)$$

Fundamentally, attention is an information retrieval operation
Two key types of information
Sensory: features or attributes of individual objects
Relational: relationships between objects
Standard attention captures the former, but not the latter

Correspondingly, there ought to be two types of attention (Standard) Sensory Attention: retrieval of *sensory* information in context *Relational Attention*: retrieval of *relational* information in context

18

Relational Attention

- 1. Attend
- 2. Relate
- 3. Tag with symbols

Same as standard (sensory attention)

Compute attention scores via learned query/key maps

$$\alpha_{ij} = \text{Softmax}([\langle \phi_q^{\text{attn}}(\mathbf{x}_i), \phi_k^{\text{attn}}(\mathbf{x}_j) \rangle]_{j=1}^n)_j$$

Relation vector, representing a series of comparisons under different attributes or extracted features

Computed as a series inner products under different learned feature maps

$$\boldsymbol{r}_{ij} = \left(\left\langle \phi_{q,\ell}^{\mathrm{rel}}(\boldsymbol{x}_i), \phi_{k,\ell}^{\mathrm{rel}}(\boldsymbol{x}_j) \right\rangle \right)_{\ell \in [d_r]} \in \mathbb{R}^{d_r}$$

Tag each object in the context with an symbol

$$(s_1,\ldots,s_n) =$$
SymbolRetriever (x_1,\ldots,x_n)

Serve as reference/pointer/identifier of selected object with whom the relation is with, abstracted away from high-dimensional sensory features

We experiment with different symbol assignment mechanisms: positional, relative positional, "soft-equivalence class"

Putting it all together

$$\boldsymbol{a}_i \leftarrow \sum_j \alpha_{ij} \cdot (W_r \, \boldsymbol{r}_{ij} + W_s \, s_j)$$

 α_{ij} : attention scores — govern selection criterion r_{ij} : relation vector — relational information s_j : symbol — identifier of source/sender object W_r, W_s : learned linear maps — organize information in residual stream

- Causal masking Positional encoding
- Symmetric relations
- Computational complexity

DUAL ATTENTION TRANSFORMER ARCHITECTURE

Relational attention : a mechanism for routing relational information

Both *sensory* and *relational* information are crucial for reasoning over collections or sequences of objects.

Dual Attention Transformer (DAT): A variant of the Transformer architecture that routes both types of information in the information retrieval step.

Introduces explicit relational processing mechanisms, while retaining sensory processing capabilities.

Dual Attention is a variant of multi-head attention with *two types of attention heads: sensory* and *relational*.

DUAL ATTENTION

Algorithm 1: Dual Attention

Input: $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^{n \times d}$

Compute self-attention heads

$$\begin{split} \boldsymbol{\alpha}^{(h)} &\leftarrow \operatorname{Softmax}((\boldsymbol{x} W_{q,h}^{\operatorname{attn}})(\boldsymbol{x} W_{k,h}^{\operatorname{attn}})^{\mathsf{T}}), \quad h \in [n_h^{sa} \\ \boldsymbol{e}_i^{(h)} &\leftarrow \sum_j \alpha_{ij}^{(h)} \boldsymbol{x}_j W_v^h, \quad i \in [n], h \in [n_h^{sa}] \\ \boldsymbol{e}_i &\leftarrow \operatorname{concat}(\boldsymbol{e}_i^{(1)}, \dots, \boldsymbol{e}_i^{(n_h^{sa})}) W_o^{sa}, \quad i \in [n] \end{split}$$

Assign symbols: $s = (s_1, \dots, s_n) \leftarrow \text{SymbolRetriever}(x; S_{\text{lib}})$

Compute relational attention heads

$$\begin{split} \boldsymbol{\alpha}^{(h)} &\leftarrow \operatorname{Softmax}\left((\boldsymbol{x} \ \boldsymbol{W}^{\operatorname{ath}}_{q,h})(\boldsymbol{x} \ \boldsymbol{W}^{\operatorname{ath}}_{k,h})^{\mathsf{T}}\right), \quad h \in [n_{h}^{ra}] \\ \boldsymbol{r}_{ij} &\leftarrow \left(\langle x_{i} \ \boldsymbol{W}^{\operatorname{el}}_{q,\ell}, x_{j} \ \boldsymbol{W}^{\operatorname{rel}}_{k,\ell}\rangle\right)_{\ell \in [d_{r}]} \quad i,j \in [n] \\ \boldsymbol{a}^{(h)}_{i} &\leftarrow \sum_{j} \boldsymbol{\alpha}^{(h)}_{ij} \left(r_{ij} \ \boldsymbol{W}^{\mathsf{h}}_{r} + s_{j} \ \boldsymbol{W}^{\mathsf{h}}_{s}\right), \quad i \in [n], \ h \in [n_{h}^{ra} \\ \boldsymbol{a}_{i} &\leftarrow \operatorname{concat}\left(a^{(1)}_{i}, \dots, a^{(n_{h}^{ra})}_{i}\right) \boldsymbol{W}^{ra}_{o}, \quad i \in [n] \end{split}$$

Output: $\left(\operatorname{concat}(\boldsymbol{e}_i, \boldsymbol{a}_i)\right)_{i=1}^n$

Algorithm 2: Dual Attention

Encoder Block

Input: $x \in \mathbb{R}^{n imes d}$

 $x \leftarrow \operatorname{Norm}(x + \operatorname{DualAttn}(x))$ $x \leftarrow \operatorname{Norm}(x + \operatorname{MLP}(x))$

Output: x

Algorithm 3: Dual Attention Decoder Block Input: $x, y \in \mathbb{R}^{n \times d}$

 $\begin{array}{l} \textbf{\textit{x}} \leftarrow \operatorname{Norm}(\textbf{\textit{x}} + \operatorname{DualAttn}(\textbf{\textit{x}})) \\ \textbf{\textit{x}} \leftarrow \operatorname{Norm}(\textbf{\textit{x}} + \operatorname{CrossAttn}(\textbf{\textit{x}}, \textbf{\textit{y}})) \\ \textbf{\textit{x}} \leftarrow \operatorname{Norm}(\textbf{\textit{x}} + \operatorname{MLP}(\textbf{\textit{x}})) \end{array}$

Output: x

EMPIRICAL INVESTIGATION

- How does the *DAT* perform on synthetic relational benchmarks?
- Data efficiency
- Scalability with data and model size (recall: bitter lesson)
- Applicability to complex real-world tasks; versatility across data modalities (language & vision)

Synthetic Relational Benchmarks: Relational Games (Shanahan et al. 2020)

SYNTHETIC RELATIONAL TASKS: TASK

SYNTHETIC RELATIONAL TASKS: RESULTS

MATHEMATICAL PROBLEM-SOLVING (SEQ2SEQ)

Dataset due to Saxton et al. (2019)

Modeled as char-level Sequence-to-Sequence task with *encoder-decoder* architecture

Module	Math Dataset Example
algebra_linear_1d	Q: Solve for $x: 3x + 7 = 19$ A: $x = 4$
algebra_sequence_next_term	Q: What is the next term in the sequence 2, 5, 8, 11,? A: 14
calculus_differentiate	Q: Find the derivative of $f(x) = 3x^2 + 2x - 5$ with respect to x . A: $6x + 2$
polynomials_expand	Q: Expand $(2x + 3)(x - 1)$. A: $2x^2 + x - 3$
polynomials_add	Q: Add the polynomials: $(2x^2 + 3x + 1) + (x^2 - 2x + 4)$ A: $3x^2 + x + 5$

MATHEMATICAL PROBLEM-SOLVING (SEQ2SEQ): RESULTS

VISUAL PROCESSING (CIFAR)

VISUAL PROCESSING (CIFAR): TASK

airplane	🛁 🐹 🔛 🛩 🖛 🗾 😹 🛶 🏎
automobile	an 😂 🚞 💁 🔤 😻 🚞 📾 🛸
bird	in 19 19 19 19 19 19 19 19 19 19 19 19 19
cat	in i
deer	🗱 🔛 🖌 🐖 🎆 💱 🕅 📰 🌉
dog	93 🔬 🤜 🔛 🌊 🏹 💽 🎎
frog	Ref 🖉 🔀 😭 🚱 🌆 💷 🔤
horse	🌁 🗶 🚰 法 🕅 🕅 🖄 🐼 🐞
ship	🚔 🌽 🚈 📥 🚢 🚁 🌽 🖉 🖄
truck	🐳 🌃 🚛 🌉 👹 🔤 📷 🖓 🕋 🚮

ViT-style encoder-only architecture processing image as sequence of patches

Dataset	Model	Params	Accuracy
CIFAR-10	ViT	7.1M	$86.4\pm0.1\%$
	ViDAT	6.0M	$89.7 \pm \mathbf{0.1\%}$
CIFAR-100	ViT	7.2M	$68.8\pm0.2\%$
	ViDAT	6.1M	$70.5 \pm \mathbf{0.1\%}$

LANGUAGE MODELING

Autoregressive causal language modeling with a "decoder-only" architecture

Use the Fineweb-Edu dataset (curated high-quality text data); train on 10B tokens

LANGUAGE MODELING: RESULTS

Evaluate scaling with data and model size

A BIT OF VISUALIZATION/INTERPRETATION

INTERPRETING VIDAT MODEL

(a) Original Image

(b) A Relation in the First Layer

(c) A Relation in the Fifth Layer

INTERPRETING DAT LANGUAGE MODELS

39

CONCLUDING REMARKS

Relational reasoning is a core facet of human intelligence, underpinning abilities for analogy, abstraction, and generalization

It is likely an important component of artificial intelligence as well

In this work, we took a step towards developing neural architectures with enhanced relational processing capabilities, while retaining powerful sensory processing

Interpretability:

 \circ How is DAT learning to use its relational processing mechanisms?

• Can specific "circuits" be identified?

• How does *DAT* achieve improved data efficiency in different tasks?

Iterate & tweak architecture; find good choices for hyperparameters

Computational considerations: optimize implementation

THANK YOU

- Joint work with John Lafferty
- Supported by funding from ARNI NSF AI Institute
- Paper: arXiv:2405.16727 / ICML '25
- Project webpage: https://awni.xyz/dual-attention/
 - Open weights on HF (DAT-LM up to 1.3B-params)
 - Implementation available via python package pip install dual-attention
- Personal webpage: https://awni.xyz