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BIG PICTURE: WHY SHOULD WE CARE
ABOUT “RELATIONAL REASONING”?



THE FUNDAMENTAL PRINCIPLES OF INTELLIGENCE

Hypothesis 0: Human & animal intelligence can be
explained by a few core principles (rather than an
encyclopedic list of heuristics)

Suggests the following goal: Study & uncover the inductive
biases that humans & animals exploit to understand
intelligence generally and inform design of AI
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THE FUNDAMENTAL PRINCIPLES OF INTELLIGENCE

Deep learning systems themselves exploit several key
inductive biases that underly their empirical success

Goal of AI Research: Uncover a core set of inductive biases for
DL that enable data-efficient learning and reasoning over
wide range of tasks and modalities

Hypothesis 1: Relational reasoning is one of these
fundamental principles of intelligence
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FIRST: WHAT IS “RELATIONAL REASONING”?
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FIRST: WHAT IS “RELATIONAL REASONING”?

Reasoning about relationships between objects and how they
interact in a given context/scene

Perform comparisons under different attributes or features, at
multiple levels of abstraction

Beyond recognizing individual objects by sensory pattern
recognition; requires higher-order relationships

Clue to its importance: Humans have a natural ability (and a
preference) to do relational reasoning

3



LET’S WALK THROUGH A COUPLE SIMPLE
ILLUSTRATIVE EXAMPLES OF RELATIONAL TASKS
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EXAMPLE: SET! CARD GAME
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EXAMPLE: SET! CARD GAME
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EXAMPLE: RELATIONAL GAMES (SHANAHAN ET AL. 2020)

Relational Games tasks from Shanahan et al. (2020)

A Visual Relational Reasoning Task:
determine whether a particular relation holds or not
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RETURNING TO OUR ORIGINAL QUESTION:
WHY SHOULD WE CARE ABOUT RELATIONAL

REASONING?
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WHY SHOULD WE CARE ABOUT “RELATIONAL REASONING”?

A cornerstone of human intelligence

Underlies capabilities for

• analogy
• abstraction
• generalization

By relating new inputs to previously-seen stimuli, we form
analogies and abstractions that allow us to systematically
generalize.
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“IN THE LIMIT, RELATIONAL REASONING YIELDS
UNIVERSAL INDUCTIVE GENERALIZATION FROM A
FINITE AND OFTEN VERY SMALL SET OF OBSERVED
CASES TO A POTENTIALLY INFINITE SET OF NOVEL

INSTANCES .” — GOYAL & BENGIO (2022)
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WE’D LIKE TO TAKE A STEP TOWARDS THIS CENTRAL
GOAL OF AI RESEARCH
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OUTLINE OF REMAINDER OF TALK

Big Picture: Why should we care about “relational reasoning”?

Main Idea & Goal

Transformers: The Sensory and the Relational

Relational Attention

Dual Attention Transformer Architecture

Empirical Investigation

Concluding Remarks
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MAIN IDEA & GOAL



OUR GOAL

Our Goal: Make progress towards a universal neural
architecture with explicit relational computational
mechanisms & inductive biases
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HOW TO IMBUE TRANSFORMERSWITH EXPLICIT RELATIONAL INDUCTIVE
BIASES

• Inductive Bias: intrinsic preferences over solution space
• View: Two types

• Additive: imbue architecture with mechanism, and let it
learn to use it

• Subtractive: constrain the space of representations a
model can compute
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NAVIGATING THE BITTER LESSON

• “The Bitter Lesson” — Rich Sutton
• Relational computational mechanisms parameterized by
neural net & learned
◦ scalable, general mechanisms;
◦ avoid domain-specific heuristic, human-engineering

• The versatility of the Transformer architecture suggests it
may form a powerful starting point
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SOME LESSONS FROM PREVIOUS WORK
Prior works on relational inductive biases

• Santoro et al. “A simple neural network module for relational reasoning’ (2017)
• Shanahan et al. “An Explicitly Relational Neural Network Architecture” (2020)
• Kerg et al. “Inductive biases for relational tasks” (2022)
• Others...

Data-efficient relational reasoning requires inductive biases

• Standard neural models (e.g., Transformers) are
data-inefficient at learning relational tasks; brittle OOD
generalization

• Hypothesized Explanation: Neural networks
overemphasize individual object representations while
lacking explicit mechanisms for encoding and processing
relational features.

• Common thread explored: constrain model to compute
relational features—relational inductive biases 12



TENSION: GENERALITY VS. INDUCTIVE BIASES

However, these models are narrow in domain

They improve relational processing, but lose generality

Empirical success limited to synthetic (purely relational)
benchmarks
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OUR GOAL: AUGMENT THE TRANSFORMER
ARCHITECTURE WITH EXPLICIT RELATIONAL

MECHANISMS & INDUCTIVE BIASES
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TRANSFORMERS: THE SENSORY AND THE
RELATIONAL



HOW TO IMBUE TRANSFORMERSWITH EXPLICIT RELATIONAL INDUCTIVE
BIASES

Strength of Transformers: attention

Versatile information retrieval mechanism
Composable in circuits to carry out complex computation
(which we’re now beginning to understand through systematic (mechanistic) interpretability work)
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THE TRANSFORMER ARCHITECTURE, ESSENTIALLY

Iterate two basic operations:

1. Information Retrieval: Attention

x′i ←
∑

j
αij ϕv(xj)

2. Local Processing: Token-wise MLP

x′i ← MLP(xi)
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ATTENTION, ESSENTIALLY

1. Compute attention scores

αij = Softmax([
⟨
ϕattn

q (xi), ϕ
attn
k (xj)

⟩
]nj=1)j

2. Retrieve weighted combination of sensory values in
context

ei ←
∑

j
αij ϕv(xj)
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TWO TYPES OF INFORMATION

Fundamentally, attention is an information retrieval operation

Two key types of information

Sensory: features or attributes of individual objects

Relational: relationships between objects

Standard attention captures the former, but not the latter
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TWO TYPES OF ATTENTION

Correspondingly, there ought to be two types of attention

(Standard) Sensory Attention:

retrieval of sensory information in context

Relational Attention:
retrieval of relational information in context
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RELATIONAL ATTENTION



HIGH-LEVEL: RELATIONAL ATTENTION

1. Attend
2. Relate
3. Tag with symbols
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1) ATTENTION

Same as standard (sensory attention)

Compute attention scores via learned query/key maps

αij = Softmax([
⟨
ϕattn

q (xi), ϕ
attn
k (xj)

⟩
]nj=1)j
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2) COMPUTING RELATIONS

Relation vector, representing a series of comparisons under
different attributes or extracted features

Computed as a series inner products under different learned
feature maps

rij =
(⟨

ϕrel
q,ℓ(xi), ϕ

rel
k,ℓ(xj)

⟩)
ℓ∈[dr]

∈ Rdr
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3) SYMBOLS

Tag each object in the context with an symbol

(s1, . . . , sn) = SymbolRetriever(x1, . . . , xn)

Serve as reference/pointer/identifier of selected object with
whom the relation is with, abstracted away from
high-dimensional sensory features

We experiment with different symbol assignment mechanisms:
positional, relative positional, “soft-equivalence class”
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RELATIONAL ATTENTION: PUTTING IT ALL TOGETHER

Putting it all together

ai ←
∑

j
αij · (Wr rij + Ws sj)

αij : attention scores — govern selection criterion

rij : relation vector — relational information

sj : symbol — identifier of source/sender object

Wr,Ws : learned linear maps — organize information in
residual stream
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A FEW COMMENTS...

Causal masking

Positional encoding

Symmetric relations

Computational complexity
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DUAL ATTENTION TRANSFORMER
ARCHITECTURE



DUAL ATTENTION TRANSFORMER

Relational attention : a mechanism for routing relational
information

Both sensory and relational information are crucial for
reasoning over collections or sequences of objects.

Dual Attention Transformer (DAT): A variant of the Transformer
architecture that routes both types of information in the
information retrieval step.

Introduces explicit relational processing mechanisms, while
retaining sensory processing capabilities.
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DUAL ATTENTION

Dual Attention is a variant of multi-head attention with two
types of attention heads: sensory and relational .
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DUAL ATTENTION

Algorithm 1: Dual Attention
Input: x = (x1, . . . , xn) ∈ Rn×d

Compute self-attention heads

α(h) ← Softmax
(
(x Wattn

q,h )(x Wattn
k,h )

⊺)
, h ∈ [nsa

h ]

e(h)i ←
∑

j
α
(h)
ij xj Wh

v , i ∈ [n], h ∈ [nsa
h ]

ei ← concat
(
e(1)i , . . . , e(n

sa
h )

i
)

Wsa
o , i ∈ [n]

Assign symbols:
s = (s1, . . . , sn)← SymbolRetriever(x; Slib)

Compute relational attention heads

α(h) ← Softmax
(
(x Wattn

q,h )(x Wattn
k,h )

⊺)
, h ∈ [nra

h ]

rij ←
(
⟨xi Wrel

q,ℓ, xj Wrel
k,ℓ⟩

)
ℓ∈[dr]

i, j ∈ [n]

a(h)
i ←

∑
j

α
(h)
ij

(
rij Wh

r + sj Wh
s
)
, i ∈ [n], h ∈ [nra

h ]

ai ← concat
(
a(1)i , . . . , a(n

ra
h )

i
)
Wra

o , i ∈ [n]

Output:
(
concat(ei,ai)

)n
i=1
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DUAL ATTENTION TRANSFORMER: ENCODER & DECODER

Algorithm 2: Dual Attention
Encoder Block

Input: x ∈ Rn×d

x← Norm(x + DualAttn(x))
x← Norm(x + MLP(x))

Output: x

Algorithm 3: Dual Attention
Decoder Block

Input: x, y ∈ Rn×d

x← Norm(x + DualAttn(x))
x← Norm(x + CrossAttn(x, y))
x← Norm(x + MLP(x))
Output: x
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EMPIRICAL INVESTIGATION



PRELUDE: WHAT QUESTIONS ARE WE TRYING TO ANSWER?

How does the DAT perform on synthetic relational
benchmarks?

Data efficiency

Scalability with data and model size (recall: bitter lesson)

Applicability to complex real-world tasks; versatility across
data modalities (language & vision)
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SYNTHETIC RELATIONAL BENCHMARKS: RELATIONAL
GAMES (SHANAHAN ET AL. 2020)
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SYNTHETIC RELATIONAL TASKS: TASK
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SYNTHETIC RELATIONAL TASKS: RESULTS
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MATHEMATICAL PROBLEM-SOLVING (SEQ2SEQ)
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MATHEMATICAL PROBLEM-SOLVING (SEQ2SEQ): TASK

Dataset due to Saxton et al. (2019)

Modeled as char-level Sequence-to-Sequence task with
encoder-decoder architecture

Module Math Dataset Example

algebra_linear_1d Q: Solve for x : 3x + 7 = 19
A: x = 4

algebra_sequence_next_term Q: What is the next term in the sequence 2, 5, 8, 11, ...?
A: 14

calculus_differentiate Q: Find the derivative of f(x) = 3x2 + 2x − 5 with respect to x.
A: 6x + 2

polynomials_expand Q: Expand (2x + 3)(x − 1).
A: 2x2 + x − 3

polynomials_add Q: Add the polynomials: (2x2 + 3x + 1) + (x2 − 2x + 4)
A: 3x2 + x + 5
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MATHEMATICAL PROBLEM-SOLVING (SEQ2SEQ): RESULTS
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VISUAL PROCESSING (CIFAR)
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VISUAL PROCESSING (CIFAR): TASK

34



VISUAL PROCESSING (CIFAR): RESULTS

ViT-style encoder-only architecture processing image as
sequence of patches

Dataset Model Params Accuracy

CIFAR-10 ViT 7.1M 86.4± 0.1%
ViDAT 6.0M 89.7± 0.1%

CIFAR-100 ViT 7.2M 68.8± 0.2%
ViDAT 6.1M 70.5± 0.1%
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LANGUAGE MODELING
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LANGUAGE MODELING: TASK

Autoregressive causal language modeling with a
“decoder-only” architecture

Use the Fineweb-Edu dataset (curated high-quality text data);
train on 10B tokens
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LANGUAGE MODELING: RESULTS

Evaluate scaling with data and model size
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A BIT OF VISUALIZATION/INTERPRETATION
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INTERPRETING VIDAT MODEL

(a) Original Image (b) A Relation in the
First Layer

(c) A Relation in the
Fifth Layer
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INTERPRETING DAT LANGUAGE MODELS
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CONCLUDING REMARKS



CONCLUDING REMARKS

Relational reasoning is a core facet of human intelligence,
underpinning abilities for analogy, abstraction, and
generalization

It is likely an important component of artificial intelligence as
well

In this work, we took a step towards developing neural
architectures with enhanced relational processing
capabilities, while retaining powerful sensory processing
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CONCLUDING REMARKS: FUTURE WORK

Interpretability:

◦ How is DAT learning to use its relational processing
mechanisms?

◦ Can specific “circuits” be identified?

◦ How does DAT achieve improved data efficiency in different
tasks?

Iterate & tweak architecture; find good choices for
hyperparameters

Computational considerations: optimize implementation
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THANK YOU
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DISCUSSION TIME...

• Joint work with John Lafferty
• Supported by funding from ARNI NSF AI Institute
• Paper: arXiv:2405.16727 / ICML ’25
• Project webpage: https://awni.xyz/dual-attention/

• Open weights on HF (DAT-LM up to 1.3B-params)
• Implementation available via python package

pip install dual-attention
• Personal webpage: https://awni.xyz
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